(∞,1)-Categorical comprehension schemes
Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 108-180.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define and study notions of comprehension in (∞,1)-category theory. In essence, we do so by implementing Bénabou's foundations of naive category theory in a univalent meta-theory. In particular, we develop natural generalizations of smallness and relative definability in this context, and show for instance that the universal cartesian fibration is small. Furthermore, by building on Johnstone's notion of comprehension schemes for ordinary fibered categories, we characterize and relate numerous higher categorical properties and structures such as left exactness, local cartesian closedness, univalent morphisms and internal (∞,1)-categories in terms of comprehension schemes.
Publié le :
Classification : 03G30, 18D30, 18N60, 18C50
Keywords: Comprehension, Relative Definability, Higher Category Theory, Fibered Category Theory, Univalent Mathematics
@article{TAC_2025_43_a5,
     author = {Raffael Stenzel},
     title = {(\ensuremath{\infty},1)-Categorical comprehension schemes},
     journal = {Theory and applications of categories},
     pages = {108--180},
     publisher = {mathdoc},
     volume = {43},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a5/}
}
TY  - JOUR
AU  - Raffael Stenzel
TI  - (∞,1)-Categorical comprehension schemes
JO  - Theory and applications of categories
PY  - 2025
SP  - 108
EP  - 180
VL  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_43_a5/
LA  - en
ID  - TAC_2025_43_a5
ER  - 
%0 Journal Article
%A Raffael Stenzel
%T (∞,1)-Categorical comprehension schemes
%J Theory and applications of categories
%D 2025
%P 108-180
%V 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_43_a5/
%G en
%F TAC_2025_43_a5
Raffael Stenzel. (∞,1)-Categorical comprehension schemes. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 108-180. http://geodesic.mathdoc.fr/item/TAC_2025_43_a5/