Two theorems of Lie on infinitesimal symmetries of differential equations
Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 93-107.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give an account, in terms of synthetic differential geometry, of some of Sophus Lie's geometric theory of first order differential equations. This theory is, in modern terms, formulated in terms of vector fields on manifolds.
Publié le :
Classification : 18F40, 53A17, 34A26, 18A40
Keywords: infinitesimal transformation, vector field, synthetic differential geometry
@article{TAC_2025_43_a4,
     author = {Anders Kock},
     title = {Two theorems of {Lie} on infinitesimal symmetries of differential 
equations},
     journal = {Theory and applications of categories},
     pages = {93--107},
     publisher = {mathdoc},
     volume = {43},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a4/}
}
TY  - JOUR
AU  - Anders Kock
TI  - Two theorems of Lie on infinitesimal symmetries of differential 
equations
JO  - Theory and applications of categories
PY  - 2025
SP  - 93
EP  - 107
VL  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_43_a4/
LA  - en
ID  - TAC_2025_43_a4
ER  - 
%0 Journal Article
%A Anders Kock
%T Two theorems of Lie on infinitesimal symmetries of differential 
equations
%J Theory and applications of categories
%D 2025
%P 93-107
%V 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_43_a4/
%G en
%F TAC_2025_43_a4
Anders Kock. Two theorems of Lie on infinitesimal symmetries of differential 
equations. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 93-107. http://geodesic.mathdoc.fr/item/TAC_2025_43_a4/