An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms
Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 23-38
We consider various characterizations of stably precohesive geometric morphisms
which are elementary in the sense that they avoid reference to concepts of
relative category theory.
Publié le :
Classification :
18B25
Keywords: toposes, geometric morphisms, locally connected, hyperconnected, local
Keywords: toposes, geometric morphisms, locally connected, hyperconnected, local
@article{TAC_2025_43_a1,
author = {Thomas Streicher},
title = {An {Elementary} {Characterization} of {Stably} {Precohesive} {Geometric} {Morphisms} as {Particular} {Precohesive} {Geometric} {Morphisms}},
journal = {Theory and applications of categories},
pages = {23--38},
year = {2025},
volume = {43},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/}
}
TY - JOUR AU - Thomas Streicher TI - An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms JO - Theory and applications of categories PY - 2025 SP - 23 EP - 38 VL - 43 UR - http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/ LA - en ID - TAC_2025_43_a1 ER -
Thomas Streicher. An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 23-38. http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/