Voir la notice de l'article provenant de la source Theory and Applications of Categories website
@article{TAC_2025_43_a1, author = {Thomas Streicher}, title = {An {Elementary} {Characterization} of {Stably} {Precohesive} {Geometric} {Morphisms} as {Particular} {Precohesive} {Geometric} {Morphisms}}, journal = {Theory and applications of categories}, pages = {23--38}, publisher = {mathdoc}, volume = {43}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/} }
TY - JOUR AU - Thomas Streicher TI - An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms JO - Theory and applications of categories PY - 2025 SP - 23 EP - 38 VL - 43 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/ LA - en ID - TAC_2025_43_a1 ER -
%0 Journal Article %A Thomas Streicher %T An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms %J Theory and applications of categories %D 2025 %P 23-38 %V 43 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/ %G en %F TAC_2025_43_a1
Thomas Streicher. An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 23-38. http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/