An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms
Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 23-38
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We consider various characterizations of stably precohesive geometric morphisms
which are elementary in the sense that they avoid reference to concepts of
relative category theory.
Publié le :
Classification :
18B25
Keywords: toposes, geometric morphisms, locally connected, hyperconnected, local
Keywords: toposes, geometric morphisms, locally connected, hyperconnected, local
@article{TAC_2025_43_a1,
author = {Thomas Streicher},
title = {An {Elementary} {Characterization} of {Stably} {Precohesive} {Geometric} {Morphisms} as {Particular} {Precohesive} {Geometric} {Morphisms}},
journal = {Theory and applications of categories},
pages = {23--38},
year = {2025},
volume = {43},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/}
}
TY - JOUR AU - Thomas Streicher TI - An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms JO - Theory and applications of categories PY - 2025 SP - 23 EP - 38 VL - 43 UR - http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/ LA - en ID - TAC_2025_43_a1 ER -
Thomas Streicher. An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 23-38. http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/