An Elementary Characterization of Stably Precohesive Geometric Morphisms as Particular Precohesive Geometric Morphisms
Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 23-38.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We consider various characterizations of stably precohesive geometric morphisms which are elementary in the sense that they avoid reference to concepts of relative category theory.
Publié le :
Classification : 18B25
Keywords: toposes, geometric morphisms, locally connected, hyperconnected, local
@article{TAC_2025_43_a1,
     author = {Thomas Streicher},
     title = {An {Elementary} {Characterization} of  {Stably} {Precohesive} {Geometric} {Morphisms}  as {Particular} {Precohesive} {Geometric} {Morphisms}},
     journal = {Theory and applications of categories},
     pages = {23--38},
     publisher = {mathdoc},
     volume = {43},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/}
}
TY  - JOUR
AU  - Thomas Streicher
TI  - An Elementary Characterization of  Stably Precohesive Geometric Morphisms  as Particular Precohesive Geometric Morphisms
JO  - Theory and applications of categories
PY  - 2025
SP  - 23
EP  - 38
VL  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/
LA  - en
ID  - TAC_2025_43_a1
ER  - 
%0 Journal Article
%A Thomas Streicher
%T An Elementary Characterization of  Stably Precohesive Geometric Morphisms  as Particular Precohesive Geometric Morphisms
%J Theory and applications of categories
%D 2025
%P 23-38
%V 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/
%G en
%F TAC_2025_43_a1
Thomas Streicher. An Elementary Characterization of  Stably Precohesive Geometric Morphisms  as Particular Precohesive Geometric Morphisms. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 23-38. http://geodesic.mathdoc.fr/item/TAC_2025_43_a1/