The eventual image
Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 180-221.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In a category with enough limits and colimits, one can form the universal automorphism on an endomorphism in two dual senses. Sometimes these dual constructions coincide, including in the categories of finite sets, finite-dimensional vector spaces, and compact metric spaces. There, beginning with an endomorphism f, there is a doubly-universal automorphism on f whose underlying object is the eventual image ∩_{n >= 0} im(f^n). Our main theorem unifies these examples, stating that in any category with a factorization system satisfying certain axioms, the eventual image has two dual universal properties. A further theorem characterizes the eventual image as a terminal coalgebra. In all, nine characterizations of the eventual image are given, valid at different levels of generality.
Publié le :
Classification : 18A32, 18A40, 18F99, 51F99
Keywords: dynamical system, factorization system, coalgebra, metric space
@article{TAC_2024_42_a8,
     author = {Tom Leinster},
     title = {The eventual image},
     journal = {Theory and applications of categories},
     pages = {180--221},
     publisher = {mathdoc},
     volume = {42},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_42_a8/}
}
TY  - JOUR
AU  - Tom Leinster
TI  - The eventual image
JO  - Theory and applications of categories
PY  - 2024
SP  - 180
EP  - 221
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_42_a8/
LA  - en
ID  - TAC_2024_42_a8
ER  - 
%0 Journal Article
%A Tom Leinster
%T The eventual image
%J Theory and applications of categories
%D 2024
%P 180-221
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_42_a8/
%G en
%F TAC_2024_42_a8
Tom Leinster. The eventual image. Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 180-221. http://geodesic.mathdoc.fr/item/TAC_2024_42_a8/