The least subtopos containing the discrete skeleton of Ω
Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 172-179
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Let p: E → S be a pre-cohesive geometric morphism. We show that the least subtopos of E containing both the subcategories p^* : S → E and p^! : S → E exists, and that it coincides with the least subtopos containing p^*2, where 2 denotes the subobject classifier of S.
Publié le :
Classification :
18B25, 18F10
Keywords: Topos, Axiomatic Cohesion, Aufhebung
Keywords: Topos, Axiomatic Cohesion, Aufhebung
@article{TAC_2024_42_a7,
author = {M. Menni},
title = {The least subtopos containing the discrete skeleton of {\ensuremath{\Omega}}},
journal = {Theory and applications of categories},
pages = {172--179},
year = {2024},
volume = {42},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2024_42_a7/}
}
M. Menni. The least subtopos containing the discrete skeleton of Ω. Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 172-179. http://geodesic.mathdoc.fr/item/TAC_2024_42_a7/