The least subtopos containing the discrete skeleton of Ω
Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 172-179.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let p: E → S be a pre-cohesive geometric morphism. We show that the least subtopos of E containing both the subcategories p^* : S → E and p^! : S → E exists, and that it coincides with the least subtopos containing p^*2, where 2 denotes the subobject classifier of S.
Publié le :
Classification : 18B25, 18F10
Keywords: Topos, Axiomatic Cohesion, Aufhebung
@article{TAC_2024_42_a7,
     author = {M. Menni},
     title = {The least subtopos containing the  discrete skeleton of {\ensuremath{\Omega}}},
     journal = {Theory and applications of categories},
     pages = {172--179},
     publisher = {mathdoc},
     volume = {42},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_42_a7/}
}
TY  - JOUR
AU  - M. Menni
TI  - The least subtopos containing the  discrete skeleton of Ω
JO  - Theory and applications of categories
PY  - 2024
SP  - 172
EP  - 179
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_42_a7/
LA  - en
ID  - TAC_2024_42_a7
ER  - 
%0 Journal Article
%A M. Menni
%T The least subtopos containing the  discrete skeleton of Ω
%J Theory and applications of categories
%D 2024
%P 172-179
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_42_a7/
%G en
%F TAC_2024_42_a7
M. Menni. The least subtopos containing the  discrete skeleton of Ω. Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 172-179. http://geodesic.mathdoc.fr/item/TAC_2024_42_a7/