Topological endomorphism monoids of models of geometric theories
Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 41-58.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A classical model theory result states that for a (set-theoretic) model of a first-order theory, there is a Galois connection between subgroups of the automorphism group of the model and `relational extensions' of the model, and the subgroups which are fixed by this connection are precisely the closed subgroups for the `pointwise convergence topology' on the automorphism group. We prove an analogous result for endomorphism monoids of models, grounded in the theory of classifying toposes. In particular, we show that the topos of continuous actions of the endomorphism monoid with respect to the pointwise convergence topology classifies a natural theory associated to the model.
Publié le :
Classification : 03C55, 18B25, 18B40, 18C10, 18F10
Keywords: model theory, classifying topos, Grothendieck topos
@article{TAC_2024_42_a2,
     author = {Morgan Rogers},
     title = {Topological endomorphism monoids of models of geometric theories},
     journal = {Theory and applications of categories},
     pages = {41--58},
     publisher = {mathdoc},
     volume = {42},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_42_a2/}
}
TY  - JOUR
AU  - Morgan Rogers
TI  - Topological endomorphism monoids of models of geometric theories
JO  - Theory and applications of categories
PY  - 2024
SP  - 41
EP  - 58
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_42_a2/
LA  - en
ID  - TAC_2024_42_a2
ER  - 
%0 Journal Article
%A Morgan Rogers
%T Topological endomorphism monoids of models of geometric theories
%J Theory and applications of categories
%D 2024
%P 41-58
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_42_a2/
%G en
%F TAC_2024_42_a2
Morgan Rogers. Topological endomorphism monoids of models of geometric theories. Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 41-58. http://geodesic.mathdoc.fr/item/TAC_2024_42_a2/