Formal category theory in augmented virtual double categories
Theory and applications of categories, Tome 41 (2024), pp. 288-413.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this article we develop formal category theory within augmented virtual double categories. Notably we formalise the classical notions of Kan extension, Yoneda embedding y:A→Â, exact square, total category and 'small' cocompletion; the latter in an appropriate sense. Throughout we compare our formalisations to their corresponding 2-categorical counterparts. Our approach has several advantages. For instance, the structure of augmented virtual double categories naturally allows us to isolate conditions that ensure small cocompleteness of formal presheaf objects Â.Given a monoidal augmented virtual double category K with a Yoneda embedding y:I→Î for its monoidal unit I we prove that, for any unital object A in K that has a 'horizontal dual' A°, the Yoneda embedding y:A→Â exists if and only if the inner hom [A°, Î] exists. This result is a special case of a more general result that, given a functor F:K→L of augmented virtual double categories, allows a Yoneda embedding in L to be "lifted", along a pair of 'universal morphisms' in L, to a Yoneda embedding in K.
Publié le :
Classification : 18D65, 18D70, 18N10
Keywords: formal category theory, Kan extension, Yoneda embedding, Yoneda structure, exactness, totality, free cocompletion, augmented virtual double category
@article{TAC_2024_41_a9,
     author = {Seerp Roald Koudenburg},
     title = {Formal category theory in augmented virtual double categories},
     journal = {Theory and applications of categories},
     pages = {288--413},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a9/}
}
TY  - JOUR
AU  - Seerp Roald Koudenburg
TI  - Formal category theory in augmented virtual double categories
JO  - Theory and applications of categories
PY  - 2024
SP  - 288
EP  - 413
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a9/
LA  - en
ID  - TAC_2024_41_a9
ER  - 
%0 Journal Article
%A Seerp Roald Koudenburg
%T Formal category theory in augmented virtual double categories
%J Theory and applications of categories
%D 2024
%P 288-413
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a9/
%G en
%F TAC_2024_41_a9
Seerp Roald Koudenburg. Formal category theory in augmented virtual double categories. Theory and applications of categories, Tome 41 (2024), pp. 288-413. http://geodesic.mathdoc.fr/item/TAC_2024_41_a9/