Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We connect Priestley duality for distributive lattices and its generalization to distributive meet-semilattices to Hofmann-Mislove-Stralka duality for semilattices. Among other things, this involves consideration of various morphisms between algebraic frames. We also show how Stone duality for boolean algebras and generalized boolean algebras fits as a particular case of the general picture we develop.
@article{TAC_2024_41_a53, author = {G. Bezhanishvili and L. Carai and P. J. Morandi}, title = {Connecting generalized {Priestley} duality to {Hofmann-Mislove-Stralka} duality}, journal = {Theory and applications of categories}, pages = {1937--1982}, publisher = {mathdoc}, volume = {41}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a53/} }
TY - JOUR AU - G. Bezhanishvili AU - L. Carai AU - P. J. Morandi TI - Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality JO - Theory and applications of categories PY - 2024 SP - 1937 EP - 1982 VL - 41 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2024_41_a53/ LA - en ID - TAC_2024_41_a53 ER -
%0 Journal Article %A G. Bezhanishvili %A L. Carai %A P. J. Morandi %T Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality %J Theory and applications of categories %D 2024 %P 1937-1982 %V 41 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2024_41_a53/ %G en %F TAC_2024_41_a53
G. Bezhanishvili; L. Carai; P. J. Morandi. Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality. Theory and applications of categories, Tome 41 (2024), pp. 1937-1982. http://geodesic.mathdoc.fr/item/TAC_2024_41_a53/