Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality
Theory and applications of categories, Tome 41 (2024), pp. 1937-1982.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We connect Priestley duality for distributive lattices and its generalization to distributive meet-semilattices to Hofmann-Mislove-Stralka duality for semilattices. Among other things, this involves consideration of various morphisms between algebraic frames. We also show how Stone duality for boolean algebras and generalized boolean algebras fits as a particular case of the general picture we develop.
Publié le :
Classification : 06A12, 06D22, 06E15, 18F70, 22A26
Keywords: Stone duality, Priestley duality, semilattice, algebraic lattice, algebraic frame, coherent frame
@article{TAC_2024_41_a53,
     author = {G. Bezhanishvili and L. Carai and P. J. Morandi},
     title = {Connecting generalized {Priestley} duality to {Hofmann-Mislove-Stralka} duality},
     journal = {Theory and applications of categories},
     pages = {1937--1982},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a53/}
}
TY  - JOUR
AU  - G. Bezhanishvili
AU  - L. Carai
AU  - P. J. Morandi
TI  - Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality
JO  - Theory and applications of categories
PY  - 2024
SP  - 1937
EP  - 1982
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a53/
LA  - en
ID  - TAC_2024_41_a53
ER  - 
%0 Journal Article
%A G. Bezhanishvili
%A L. Carai
%A P. J. Morandi
%T Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality
%J Theory and applications of categories
%D 2024
%P 1937-1982
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a53/
%G en
%F TAC_2024_41_a53
G. Bezhanishvili; L. Carai; P. J. Morandi. Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality. Theory and applications of categories, Tome 41 (2024), pp. 1937-1982. http://geodesic.mathdoc.fr/item/TAC_2024_41_a53/