From abelian categories to 2-abelian bicategories
Theory and applications of categories, Tome 41 (2024), pp. 1812-1872.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that, if A is an abelian category, then a certain bicategory of fractions Arr(A)[Σ^{-1}] of the 2-category Arr(A) in A is 2-abelian. On the way, we study homotopy kernels and homotopy cokernels, their relationship with 2-limits and bilimits, and how they pass through the general construction of the bicategory of fractions. We also introduce two new factorization systems in A and we use them to describe the class Σ of "weak equivalences".
Publié le :
Classification : 18A32, 18E10, 18E35, 18G45, 18N10
Keywords: homotopy limit, bilimit, bicategory of fractions, factorization system, arrow category, 2-abelian bicategory
@article{TAC_2024_41_a50,
     author = {Enrico M. Vitale},
     title = {From abelian categories to 2-abelian bicategories},
     journal = {Theory and applications of categories},
     pages = {1812--1872},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a50/}
}
TY  - JOUR
AU  - Enrico M. Vitale
TI  - From abelian categories to 2-abelian bicategories
JO  - Theory and applications of categories
PY  - 2024
SP  - 1812
EP  - 1872
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a50/
LA  - en
ID  - TAC_2024_41_a50
ER  - 
%0 Journal Article
%A Enrico M. Vitale
%T From abelian categories to 2-abelian bicategories
%J Theory and applications of categories
%D 2024
%P 1812-1872
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a50/
%G en
%F TAC_2024_41_a50
Enrico M. Vitale. From abelian categories to 2-abelian bicategories. Theory and applications of categories, Tome 41 (2024), pp. 1812-1872. http://geodesic.mathdoc.fr/item/TAC_2024_41_a50/