A coherence theorem for pseudo symmetric multifunctors
Theory and applications of categories, Tome 41 (2024), pp. 1644-1678.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Donald Yau defined the notion of pseudo symmetric Cat-enriched multifunctor between Cat-enriched multicategories and proved that Mandell's inverse K-theory multifunctor is pseudo symmetric. We prove a coherence theorem for pseudo symmetric Cat-enriched multifunctors. As an application we prove that pseudo symmetric Cat-enriched multifunctors, and in particular Mandell's inverse K-theory, preserve Σ-free E_n-algebras (n=1,2,...,∞), at the cost of changing the parameterizing Σ-free E_n-operad O for the Σ-free E_n-operad O x EΣ_*.
Publié le :
Classification : Primary 18M65, 19D23, Secondary 55P47, 55P43.
Keywords: Multicategories, K-theory
@article{TAC_2024_41_a46,
     author = {Diego Manco},
     title = {A coherence theorem for pseudo symmetric multifunctors},
     journal = {Theory and applications of categories},
     pages = {1644--1678},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a46/}
}
TY  - JOUR
AU  - Diego Manco
TI  - A coherence theorem for pseudo symmetric multifunctors
JO  - Theory and applications of categories
PY  - 2024
SP  - 1644
EP  - 1678
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a46/
LA  - en
ID  - TAC_2024_41_a46
ER  - 
%0 Journal Article
%A Diego Manco
%T A coherence theorem for pseudo symmetric multifunctors
%J Theory and applications of categories
%D 2024
%P 1644-1678
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a46/
%G en
%F TAC_2024_41_a46
Diego Manco. A coherence theorem for pseudo symmetric multifunctors. Theory and applications of categories, Tome 41 (2024), pp. 1644-1678. http://geodesic.mathdoc.fr/item/TAC_2024_41_a46/