A coherence theorem for pseudo symmetric multifunctors
Theory and applications of categories, Tome 41 (2024), pp. 1644-1678
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Donald Yau defined the notion of pseudo symmetric Cat-enriched multifunctor between Cat-enriched multicategories and proved that Mandell's inverse K-theory multifunctor is pseudo symmetric. We prove a coherence theorem for pseudo symmetric Cat-enriched multifunctors. As an application we prove that pseudo symmetric Cat-enriched multifunctors, and in particular Mandell's inverse K-theory, preserve Σ-free E_n-algebras (n=1,2,...,∞), at the cost of changing the parameterizing Σ-free E_n-operad O for the Σ-free E_n-operad O x EΣ_*.
Publié le :
Classification :
Primary 18M65, 19D23, Secondary 55P47, 55P43.
Keywords: Multicategories, K-theory
Keywords: Multicategories, K-theory
@article{TAC_2024_41_a46,
author = {Diego Manco},
title = {A coherence theorem for pseudo symmetric multifunctors},
journal = {Theory and applications of categories},
pages = {1644--1678},
publisher = {mathdoc},
volume = {41},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a46/}
}
Diego Manco. A coherence theorem for pseudo symmetric multifunctors. Theory and applications of categories, Tome 41 (2024), pp. 1644-1678. http://geodesic.mathdoc.fr/item/TAC_2024_41_a46/