Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Twisted separable functors generalize the separable functors of Nastasescu, Van den Bergh and Van Oystaeyen, and provide a convenient tool to compare various projective dimensions. We discuss when an adjoint functor is twisted separable, obtaining a version of Rafael's Theorem in the twisted case. As an application, we show that if R is Hopf-Galois object over a Hopf algebra A, then their Hochschild cohomological dimension coincide, provided that the cohomological dimension of A is finite and that R has a unital twisted trace with respect to a semi-colinear automorphism.
@article{TAC_2024_41_a4, author = {Julien Bichon}, title = {Twisted separability for adjoint functors}, journal = {Theory and applications of categories}, pages = {150--167}, publisher = {mathdoc}, volume = {41}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a4/} }
Julien Bichon. Twisted separability for adjoint functors. Theory and applications of categories, Tome 41 (2024), pp. 150-167. http://geodesic.mathdoc.fr/item/TAC_2024_41_a4/