Towards constructivising the Freyd-Mitchell Embedding Theorem
Theory and applications of categories, Tome 41 (2024), pp. 1416-1438.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The aim of the paper is to first point out that the classical proof of the Freyd-Mitchell Embedding Theorem does not work in CZF; then, to show how to embed in a constructive way a small abelian category into the category of sheaves of modules over a ringed space.
Publié le :
Classification : 18E10, 03G30, 18E20, 03F65
Keywords: abelian categories, embedding, CZF, IZF, constructive mathematics
@article{TAC_2024_41_a39,
     author = {Anna Giulia Montaruli},
     title = {Towards constructivising the {Freyd-Mitchell} {Embedding} {Theorem}},
     journal = {Theory and applications of categories},
     pages = {1416--1438},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a39/}
}
TY  - JOUR
AU  - Anna Giulia Montaruli
TI  - Towards constructivising the Freyd-Mitchell Embedding Theorem
JO  - Theory and applications of categories
PY  - 2024
SP  - 1416
EP  - 1438
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a39/
LA  - en
ID  - TAC_2024_41_a39
ER  - 
%0 Journal Article
%A Anna Giulia Montaruli
%T Towards constructivising the Freyd-Mitchell Embedding Theorem
%J Theory and applications of categories
%D 2024
%P 1416-1438
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a39/
%G en
%F TAC_2024_41_a39
Anna Giulia Montaruli. Towards constructivising the Freyd-Mitchell Embedding Theorem. Theory and applications of categories, Tome 41 (2024), pp. 1416-1438. http://geodesic.mathdoc.fr/item/TAC_2024_41_a39/