Towards constructivising the Freyd-Mitchell Embedding Theorem
Theory and applications of categories, Tome 41 (2024), pp. 1416-1438
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
The aim of the paper is to first point out that the classical proof of the Freyd-Mitchell Embedding Theorem does not work in CZF; then, to show how to embed in a constructive way a small abelian category into the category of sheaves of modules over a ringed space.
Publié le :
Classification :
18E10, 03G30, 18E20, 03F65
Keywords: abelian categories, embedding, CZF, IZF, constructive mathematics
Keywords: abelian categories, embedding, CZF, IZF, constructive mathematics
@article{TAC_2024_41_a39,
author = {Anna Giulia Montaruli},
title = {Towards constructivising the {Freyd-Mitchell} {Embedding} {Theorem}},
journal = {Theory and applications of categories},
pages = {1416--1438},
year = {2024},
volume = {41},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a39/}
}
Anna Giulia Montaruli. Towards constructivising the Freyd-Mitchell Embedding Theorem. Theory and applications of categories, Tome 41 (2024), pp. 1416-1438. http://geodesic.mathdoc.fr/item/TAC_2024_41_a39/