Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We show that the category of (reflexive) graphs and graph maps carries exactly two closed symmetric monoidal products: the box product and the categorical product.
@article{TAC_2024_41_a22, author = {Krzysztof Kapulkin and Nathan Kershaw}, title = {Closed symmetric monoidal structures on the category of graphs}, journal = {Theory and applications of categories}, pages = {760--784}, publisher = {mathdoc}, volume = {41}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a22/} }
TY - JOUR AU - Krzysztof Kapulkin AU - Nathan Kershaw TI - Closed symmetric monoidal structures on the category of graphs JO - Theory and applications of categories PY - 2024 SP - 760 EP - 784 VL - 41 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2024_41_a22/ LA - en ID - TAC_2024_41_a22 ER -
Krzysztof Kapulkin; Nathan Kershaw. Closed symmetric monoidal structures on the category of graphs. Theory and applications of categories, Tome 41 (2024), pp. 760-784. http://geodesic.mathdoc.fr/item/TAC_2024_41_a22/