Closed symmetric monoidal structures on the category of graphs
Theory and applications of categories, Tome 41 (2024), pp. 760-784.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that the category of (reflexive) graphs and graph maps carries exactly two closed symmetric monoidal products: the box product and the categorical product.
Publié le :
Classification : 18M05, 05C76
Keywords: graph, product, monoidal category, Day convolution
@article{TAC_2024_41_a22,
     author = {Krzysztof Kapulkin and Nathan Kershaw},
     title = {Closed symmetric monoidal structures on the category of graphs},
     journal = {Theory and applications of categories},
     pages = {760--784},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a22/}
}
TY  - JOUR
AU  - Krzysztof Kapulkin
AU  - Nathan Kershaw
TI  - Closed symmetric monoidal structures on the category of graphs
JO  - Theory and applications of categories
PY  - 2024
SP  - 760
EP  - 784
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a22/
LA  - en
ID  - TAC_2024_41_a22
ER  - 
%0 Journal Article
%A Krzysztof Kapulkin
%A Nathan Kershaw
%T Closed symmetric monoidal structures on the category of graphs
%J Theory and applications of categories
%D 2024
%P 760-784
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a22/
%G en
%F TAC_2024_41_a22
Krzysztof Kapulkin; Nathan Kershaw. Closed symmetric monoidal structures on the category of graphs. Theory and applications of categories, Tome 41 (2024), pp. 760-784. http://geodesic.mathdoc.fr/item/TAC_2024_41_a22/