Adjoint functor theorems for lax-idempotent pseudomonads
Theory and applications of categories, Tome 41 (2024), pp. 667-685.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For each pair of lax-idempotent pseudomonads R and I, for which I is locally fully faithful and R distributes over I, we establish an adjoint functor theorem, relating R-cocontinuity to adjointness relative to I. This provides a new perspective on the nature of adjoint functor theorems, which may be seen as methods to decompose adjointness into cocontinuity and relative adjointness. As special cases, we recover variants of the adjoint functor theorem of Freyd, the multiadjoint functor theorem of Diers, and the pluriadjoint functor theorem of Solian-Viswanathan, as well as the adjoint functor theorems for locally presentable categories. More generally, we recover enriched Φ-adjoint functor theorems for weakly sound classes of weight Φ.
Publié le :
Classification : 18D70, 18D65, 18C15, 18A35, 18A40, 18D20, 18N10
Keywords: adjoint functor theorem, relative adjunction, lax-idempotent pseudomonad, KZ-doctrine, free cocompletion, pseudodistributive law, 2-category, formal category theory
@article{TAC_2024_41_a19,
     author = {Nathanael Arkor and Ivan Di Liberti and Fosco Loregian},
     title = {Adjoint functor theorems for lax-idempotent pseudomonads},
     journal = {Theory and applications of categories},
     pages = {667--685},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a19/}
}
TY  - JOUR
AU  - Nathanael Arkor
AU  - Ivan Di Liberti
AU  - Fosco Loregian
TI  - Adjoint functor theorems for lax-idempotent pseudomonads
JO  - Theory and applications of categories
PY  - 2024
SP  - 667
EP  - 685
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a19/
LA  - en
ID  - TAC_2024_41_a19
ER  - 
%0 Journal Article
%A Nathanael Arkor
%A Ivan Di Liberti
%A Fosco Loregian
%T Adjoint functor theorems for lax-idempotent pseudomonads
%J Theory and applications of categories
%D 2024
%P 667-685
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a19/
%G en
%F TAC_2024_41_a19
Nathanael Arkor; Ivan Di Liberti; Fosco Loregian. Adjoint functor theorems for lax-idempotent pseudomonads. Theory and applications of categories, Tome 41 (2024), pp. 667-685. http://geodesic.mathdoc.fr/item/TAC_2024_41_a19/