Voir la notice de l'article provenant de la source Theory and Applications of Categories website
For each pair of lax-idempotent pseudomonads R and I, for which I is locally fully faithful and R distributes over I, we establish an adjoint functor theorem, relating R-cocontinuity to adjointness relative to I. This provides a new perspective on the nature of adjoint functor theorems, which may be seen as methods to decompose adjointness into cocontinuity and relative adjointness. As special cases, we recover variants of the adjoint functor theorem of Freyd, the multiadjoint functor theorem of Diers, and the pluriadjoint functor theorem of Solian-Viswanathan, as well as the adjoint functor theorems for locally presentable categories. More generally, we recover enriched Φ-adjoint functor theorems for weakly sound classes of weight Φ.
@article{TAC_2024_41_a19, author = {Nathanael Arkor and Ivan Di Liberti and Fosco Loregian}, title = {Adjoint functor theorems for lax-idempotent pseudomonads}, journal = {Theory and applications of categories}, pages = {667--685}, publisher = {mathdoc}, volume = {41}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a19/} }
TY - JOUR AU - Nathanael Arkor AU - Ivan Di Liberti AU - Fosco Loregian TI - Adjoint functor theorems for lax-idempotent pseudomonads JO - Theory and applications of categories PY - 2024 SP - 667 EP - 685 VL - 41 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2024_41_a19/ LA - en ID - TAC_2024_41_a19 ER -
Nathanael Arkor; Ivan Di Liberti; Fosco Loregian. Adjoint functor theorems for lax-idempotent pseudomonads. Theory and applications of categories, Tome 41 (2024), pp. 667-685. http://geodesic.mathdoc.fr/item/TAC_2024_41_a19/