Towards a new cohomology theory for strict Lie 2-groups
Theory and applications of categories, Tome 41 (2024), pp. 593-666.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this article, we introduce the first degrees of a cochain complex associated to a strict Lie 2-group whose cohomology is shown to extend the classical cohomology theory of Lie groups. In particular, we show that the second cohomology group classifies an appropriate type of extensions. We conclude putting forward evidence that this complex can be extended to arbitrary degrees.
Publié le :
Classification : 17B56, 18D05, 22A22
Keywords: Cohomology, higher Lie theory
@article{TAC_2024_41_a18,
     author = {Camilo Angulo},
     title = {Towards a new cohomology theory for strict {Lie} 2-groups},
     journal = {Theory and applications of categories},
     pages = {593--666},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a18/}
}
TY  - JOUR
AU  - Camilo Angulo
TI  - Towards a new cohomology theory for strict Lie 2-groups
JO  - Theory and applications of categories
PY  - 2024
SP  - 593
EP  - 666
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a18/
LA  - en
ID  - TAC_2024_41_a18
ER  - 
%0 Journal Article
%A Camilo Angulo
%T Towards a new cohomology theory for strict Lie 2-groups
%J Theory and applications of categories
%D 2024
%P 593-666
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a18/
%G en
%F TAC_2024_41_a18
Camilo Angulo. Towards a new cohomology theory for strict Lie 2-groups. Theory and applications of categories, Tome 41 (2024), pp. 593-666. http://geodesic.mathdoc.fr/item/TAC_2024_41_a18/