Lax comma categories: cartesian closedness, extensivity, topologicity, and descent
Theory and applications of categories, Tome 41 (2024), pp. 516-530
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We investigate the properties of lax comma categories over a base category X, focusing on topologicity, extensivity, cartesian closedness, and descent. We establish that the forgetful functor from Cat//X to Cat is topological if and only if X is large-complete. Moreover, we provide conditions for Cat//X to be complete, cocomplete, extensive and cartesian closed. We analyze descent in Cat//X and identify necessary conditions for effective descent morphisms. Our findings contribute to the literature on lax comma categories and provide a foundation for further research in 2-dimensional Janelidze's Galois theory.
Publié le :
Classification :
18N10, 18N15, 18A05, 18A22, 18A40
Keywords: lax comma categories, Grothendieck descent theory, Galois theory, 2-dimensional category theory, topological functor, effective descent morphism, cartesian closed category, exponentiability
Keywords: lax comma categories, Grothendieck descent theory, Galois theory, 2-dimensional category theory, topological functor, effective descent morphism, cartesian closed category, exponentiability
@article{TAC_2024_41_a15,
author = {Maria Manuel Clementino and Fernando Lucatelli Nunes and Rui Prezado},
title = {Lax comma categories: cartesian closedness, extensivity, topologicity, and descent},
journal = {Theory and applications of categories},
pages = {516--530},
year = {2024},
volume = {41},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a15/}
}
TY - JOUR AU - Maria Manuel Clementino AU - Fernando Lucatelli Nunes AU - Rui Prezado TI - Lax comma categories: cartesian closedness, extensivity, topologicity, and descent JO - Theory and applications of categories PY - 2024 SP - 516 EP - 530 VL - 41 UR - http://geodesic.mathdoc.fr/item/TAC_2024_41_a15/ LA - en ID - TAC_2024_41_a15 ER -
%0 Journal Article %A Maria Manuel Clementino %A Fernando Lucatelli Nunes %A Rui Prezado %T Lax comma categories: cartesian closedness, extensivity, topologicity, and descent %J Theory and applications of categories %D 2024 %P 516-530 %V 41 %U http://geodesic.mathdoc.fr/item/TAC_2024_41_a15/ %G en %F TAC_2024_41_a15
Maria Manuel Clementino; Fernando Lucatelli Nunes; Rui Prezado. Lax comma categories: cartesian closedness, extensivity, topologicity, and descent. Theory and applications of categories, Tome 41 (2024), pp. 516-530. http://geodesic.mathdoc.fr/item/TAC_2024_41_a15/