For a compact group G, the functor from unital Banach algebras with contractive morphisms to metric spaces with 1-Lipschitz maps sending a Banach algebra A to the space of G-representations in A preserves filtered colimits. Along with this, we prove a number of analogues: one can substitute unitary representations in C*-algebras, as well as semisimple finite-dimensional Banach algebras (or finite-dimensional C*-algebras) for G. These all mimic results on the metric-enriched finite generation/presentability of finite-dimensional Banach spaces due to Adámek and Rosický. We also give an alternative proof of that finite presentability result, along with parallel results on functors represented by compact metric, metric convex, or metric absolutely convex spaces.
@article{TAC_2024_41_a13,
author = {Alexandru Chirvasitu},
title = {Semisimplicity manifesting as categorical smallness},
journal = {Theory and applications of categories},
pages = {470--492},
publisher = {mathdoc},
volume = {41},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a13/}
}
TY - JOUR
AU - Alexandru Chirvasitu
TI - Semisimplicity manifesting as categorical smallness
JO - Theory and applications of categories
PY - 2024
SP - 470
EP - 492
VL - 41
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TAC_2024_41_a13/
LA - en
ID - TAC_2024_41_a13
ER -
%0 Journal Article
%A Alexandru Chirvasitu
%T Semisimplicity manifesting as categorical smallness
%J Theory and applications of categories
%D 2024
%P 470-492
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a13/
%G en
%F TAC_2024_41_a13
Alexandru Chirvasitu. Semisimplicity manifesting as categorical smallness. Theory and applications of categories, Tome 41 (2024), pp. 470-492. http://geodesic.mathdoc.fr/item/TAC_2024_41_a13/