Existence of groupoid models for diagrams of groupoid correspondences
Theory and applications of categories, Tome 41 (2024), pp. 449-469.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This article continues the study of diagrams in the bicategory of étale groupoid correspondences. We prove that any such diagram has a groupoid model and that the groupoid model is a locally compact étale groupoid if the diagram is locally compact and proper. A key tool for this is the relative Stone-Cech compactification for spaces over a locally compact Hausdorff space.
Publié le :
Classification : 18A30, 18N10, 18B40
Keywords: étale groupoid, groupoid correspondence, bicategory, terminal object, relative Stone-Cech compactification
@article{TAC_2024_41_a12,
     author = {Joanna Ko and Ralf Meyer},
     title = {Existence of groupoid models for diagrams of groupoid correspondences},
     journal = {Theory and applications of categories},
     pages = {449--469},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a12/}
}
TY  - JOUR
AU  - Joanna Ko
AU  - Ralf Meyer
TI  - Existence of groupoid models for diagrams of groupoid correspondences
JO  - Theory and applications of categories
PY  - 2024
SP  - 449
EP  - 469
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a12/
LA  - en
ID  - TAC_2024_41_a12
ER  - 
%0 Journal Article
%A Joanna Ko
%A Ralf Meyer
%T Existence of groupoid models for diagrams of groupoid correspondences
%J Theory and applications of categories
%D 2024
%P 449-469
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a12/
%G en
%F TAC_2024_41_a12
Joanna Ko; Ralf Meyer. Existence of groupoid models for diagrams of groupoid correspondences. Theory and applications of categories, Tome 41 (2024), pp. 449-469. http://geodesic.mathdoc.fr/item/TAC_2024_41_a12/