Voir la notice de l'article provenant de la source Theory and Applications of Categories website
This article continues the study of diagrams in the bicategory of étale groupoid correspondences. We prove that any such diagram has a groupoid model and that the groupoid model is a locally compact étale groupoid if the diagram is locally compact and proper. A key tool for this is the relative Stone-Cech compactification for spaces over a locally compact Hausdorff space.
@article{TAC_2024_41_a12, author = {Joanna Ko and Ralf Meyer}, title = {Existence of groupoid models for diagrams of groupoid correspondences}, journal = {Theory and applications of categories}, pages = {449--469}, publisher = {mathdoc}, volume = {41}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a12/} }
Joanna Ko; Ralf Meyer. Existence of groupoid models for diagrams of groupoid correspondences. Theory and applications of categories, Tome 41 (2024), pp. 449-469. http://geodesic.mathdoc.fr/item/TAC_2024_41_a12/