Cartesian Closed Double Categories
Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 63-79.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We consider two approaches to cartesian closed double categories generalizing two definitions which are equivalent for 1-categories, and give examples to show that the two differ in the double category case. One approach, previously considered in [N20], requires the lax functor (-) x Y on D to have a right adjoint (-)^Y, for every object Y, while the other supposes that the exponentials are given by a lax bifunctor D^op x D --> D also involving vertical (i.e., loose) morphisms of D. Examples include the double categories Cat, Pos, Top, Loc, and Quant, whose objects are small categories, posets, topological spaces, locales, and commutative quantales, respectively; as well as, the double categories Span(D) and Q-Rel, whose vertical morphisms are spans in a category D with pullback and relations valued in a locale Q, respectively.
Publié le :
Classification : 18N10, 18D15, 18B10, 18F75, 54C35
Keywords: double categories, cartesian closed, spans/cospans, quantales, relations
@article{TAC_2024_40_a2,
     author = {Susan Niefield},
     title = {Cartesian {Closed} {Double} {Categories}},
     journal = {Theory and applications of categories},
     pages = {63--79},
     publisher = {mathdoc},
     volume = {40},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a2/}
}
TY  - JOUR
AU  - Susan Niefield
TI  - Cartesian Closed Double Categories
JO  - Theory and applications of categories
PY  - 2024
SP  - 63
EP  - 79
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_40_a2/
LA  - en
ID  - TAC_2024_40_a2
ER  - 
%0 Journal Article
%A Susan Niefield
%T Cartesian Closed Double Categories
%J Theory and applications of categories
%D 2024
%P 63-79
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_40_a2/
%G en
%F TAC_2024_40_a2
Susan Niefield. Cartesian Closed Double Categories. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 63-79. http://geodesic.mathdoc.fr/item/TAC_2024_40_a2/