Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We introduce the notion of Kan injectivity in 2-categories and study its properties. For an adequate 2-category K, we show that every set of morphisms H induces a KZ-pseudomonad on K whose 2-category of pseudoalgebras is the locally full sub-2-category of all objects (left) Kan injective with respect to H and morphisms preserving Kan extensions. The main ingredient is the construction of a (pseudo)chain whose appropriate "convergence" is ensured by a small object argument.
@article{TAC_2024_40_a15, author = {Ivan Di Liberti and Gabriele Lobbia and Lurdes Sousa}, title = {KZ-pseudomonads and {Kan} injectivity}, journal = {Theory and applications of categories}, pages = {430--478}, publisher = {mathdoc}, volume = {40}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a15/} }
Ivan Di Liberti; Gabriele Lobbia; Lurdes Sousa. KZ-pseudomonads and Kan injectivity. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 430-478. http://geodesic.mathdoc.fr/item/TAC_2024_40_a15/