Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We prove that cloven Grothendieck fibrations over a fixed base B are the pseudo-coalgebras for a lax idempotent 2-comonad on Cat/B. We show this via an original observation that the known colax idempotent 2-monad for fibrations over a fixed base has a right 2-adjoint. As an important consequence, we obtain an original cofree construction of a fibration on a functor. We also give a new, conceptual proof of the fact that the forgetful 2-functor from split fibrations to cloven fibrations over a fixed base has both a left 2-adjoint and a right 2-adjoint, in terms of coherence phenomena of strictification of pseudo-(co)algebras. The 2-monad for fibrations yields the left splitting and the 2-comonad yields the right splitting. Moreover, we show that the constructions induced by these coherence theorems recover Giraud's explicit constructions of the left and the right splittings.
@article{TAC_2024_40_a12, author = {Jacopo Emmenegger and Luca Mesiti and Giuseppe Rosolini and Thomas Streicher}, title = {A comonad for {Grothendieck} fibrations}, journal = {Theory and applications of categories}, pages = {371--389}, publisher = {mathdoc}, volume = {40}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a12/} }
TY - JOUR AU - Jacopo Emmenegger AU - Luca Mesiti AU - Giuseppe Rosolini AU - Thomas Streicher TI - A comonad for Grothendieck fibrations JO - Theory and applications of categories PY - 2024 SP - 371 EP - 389 VL - 40 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2024_40_a12/ LA - en ID - TAC_2024_40_a12 ER -
Jacopo Emmenegger; Luca Mesiti; Giuseppe Rosolini; Thomas Streicher. A comonad for Grothendieck fibrations. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 371-389. http://geodesic.mathdoc.fr/item/TAC_2024_40_a12/