Duality for positive opetopes and positive zoom complexes
Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 337-370.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that the (positive) zoom complexes, with fairly natural morphisms, form a dual category to the category of positive opetopes with contraction epimorphisms. We also show how this duality can be slightly extended to positive opetopic cardinals.
Publié le :
Classification : 18N30, 18A50, 18F70
Keywords: positive opetope, constellation, positive zoom complex, duality
@article{TAC_2024_40_a11,
     author = {Marek Zawadowski},
     title = {Duality for positive opetopes and positive zoom complexes},
     journal = {Theory and applications of categories},
     pages = {337--370},
     publisher = {mathdoc},
     volume = {40},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a11/}
}
TY  - JOUR
AU  - Marek Zawadowski
TI  - Duality for positive opetopes and positive zoom complexes
JO  - Theory and applications of categories
PY  - 2024
SP  - 337
EP  - 370
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_40_a11/
LA  - en
ID  - TAC_2024_40_a11
ER  - 
%0 Journal Article
%A Marek Zawadowski
%T Duality for positive opetopes and positive zoom complexes
%J Theory and applications of categories
%D 2024
%P 337-370
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_40_a11/
%G en
%F TAC_2024_40_a11
Marek Zawadowski. Duality for positive opetopes and positive zoom complexes. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 337-370. http://geodesic.mathdoc.fr/item/TAC_2024_40_a11/