Monoidal centres and groupoid-graded categories
Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 3-31.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We denote the monoidal bicategory of two-sided modules (also called profunctors, bimodules and distributors) between categories by Mod; the tensor product is cartesian product of categories. For a groupoid G, we study the monoidal centre ZPs(G,Mod^op) of the monoidal bicategory Ps(G, Mod^op) of pseudofunctors and pseudonatural transformations; the tensor product is pointwise. Alexei Davydov defined the full centre of a monoid in a monoidal category. We define a higher dimensional version: the full monoidal centre of a monoidale (= pseudomonoid) in a monoidal bicategory M, and it is a braided monoidale in the monoidal centre ZM of M. Each fibration pi : M -> G between groupoids provides an example of a full monoidal centre of a monoidale in Ps(G, Mod^op). For a group G, we explain how the G-graded categorical structures, as considered by Turaev and Virelizier in order to construct topological invariants, fit into this monoidal bicategory context. We see that their structures are monoidales in the monoidal centre of the monoidal bicategory of k-linear categories on which G acts.
Publié le :
Classification : 18M15, 18N10, 18D15, 18D20, 18D60, 57K16, 57K31
Keywords: monoidal centre, graded center, graded category, Day convolution, bidual
@article{TAC_2024_40_a0,
     author = {Branko Nikoli\'c and Ross Street},
     title = {Monoidal centres and groupoid-graded categories},
     journal = {Theory and applications of categories},
     pages = {3--31},
     publisher = {mathdoc},
     volume = {40},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a0/}
}
TY  - JOUR
AU  - Branko Nikolić
AU  - Ross Street
TI  - Monoidal centres and groupoid-graded categories
JO  - Theory and applications of categories
PY  - 2024
SP  - 3
EP  - 31
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_40_a0/
LA  - en
ID  - TAC_2024_40_a0
ER  - 
%0 Journal Article
%A Branko Nikolić
%A Ross Street
%T Monoidal centres and groupoid-graded categories
%J Theory and applications of categories
%D 2024
%P 3-31
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_40_a0/
%G en
%F TAC_2024_40_a0
Branko Nikolić; Ross Street. Monoidal centres and groupoid-graded categories. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 3-31. http://geodesic.mathdoc.fr/item/TAC_2024_40_a0/