Q-system completeness of unitary connections
Theory and applications of categories, Tome 39 (2023), pp. 1121-1151.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A Q-system is a unitary version of a separable Frobenius algebra object in a C*-tensor category. In a recent joint work with P. Das, S. Ghosh and C. Jones, the author has categorified Bratteli diagrams and unitary connections by building a 2-category UC. We prove that every Q-system in UC splits.
Publié le :
Classification : 46M15, 46L37
Keywords: Q-systems, Unitary Connections, Subfactors, C*-2-categories
@article{TAC_2023_39_a36,
     author = {Mainak Ghosh},
     title = {Q-system completeness of unitary connections},
     journal = {Theory and applications of categories},
     pages = {1121--1151},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a36/}
}
TY  - JOUR
AU  - Mainak Ghosh
TI  - Q-system completeness of unitary connections
JO  - Theory and applications of categories
PY  - 2023
SP  - 1121
EP  - 1151
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a36/
LA  - en
ID  - TAC_2023_39_a36
ER  - 
%0 Journal Article
%A Mainak Ghosh
%T Q-system completeness of unitary connections
%J Theory and applications of categories
%D 2023
%P 1121-1151
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a36/
%G en
%F TAC_2023_39_a36
Mainak Ghosh. Q-system completeness of unitary connections. Theory and applications of categories, Tome 39 (2023), pp. 1121-1151. http://geodesic.mathdoc.fr/item/TAC_2023_39_a36/