Category-colored operads, internal operads, and Markl O-operads
Theory and applications of categories, Tome 39 (2023), pp. 874-915.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We present a Markl-style definition of operads colored by a small category. In the presence of a unit these are equivalent to substitudes of Day and Street. We show that operads colored by a category are internal algebras of a certain categorical operad of functors. We describe a groupoid-colored quadratic binary operad, whose algebras are non-unital Markl operads in the context of operadic categories. As a by-product we describe the free internal operad construction.
Publié le :
Classification : 18M60
Keywords: Colored operad, Internal operad, Operadic category, Markl operad, Hyperoperad
@article{TAC_2023_39_a29,
     author = {Dominik Trnka},
     title = {Category-colored operads, internal operads, and {Markl} {O-operads}},
     journal = {Theory and applications of categories},
     pages = {874--915},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a29/}
}
TY  - JOUR
AU  - Dominik Trnka
TI  - Category-colored operads, internal operads, and Markl O-operads
JO  - Theory and applications of categories
PY  - 2023
SP  - 874
EP  - 915
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a29/
LA  - en
ID  - TAC_2023_39_a29
ER  - 
%0 Journal Article
%A Dominik Trnka
%T Category-colored operads, internal operads, and Markl O-operads
%J Theory and applications of categories
%D 2023
%P 874-915
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a29/
%G en
%F TAC_2023_39_a29
Dominik Trnka. Category-colored operads, internal operads, and Markl O-operads. Theory and applications of categories, Tome 39 (2023), pp. 874-915. http://geodesic.mathdoc.fr/item/TAC_2023_39_a29/