Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We present a Markl-style definition of operads colored by a small category. In the presence of a unit these are equivalent to substitudes of Day and Street. We show that operads colored by a category are internal algebras of a certain categorical operad of functors. We describe a groupoid-colored quadratic binary operad, whose algebras are non-unital Markl operads in the context of operadic categories. As a by-product we describe the free internal operad construction.
@article{TAC_2023_39_a29, author = {Dominik Trnka}, title = {Category-colored operads, internal operads, and {Markl} {O-operads}}, journal = {Theory and applications of categories}, pages = {874--915}, publisher = {mathdoc}, volume = {39}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a29/} }
Dominik Trnka. Category-colored operads, internal operads, and Markl O-operads. Theory and applications of categories, Tome 39 (2023), pp. 874-915. http://geodesic.mathdoc.fr/item/TAC_2023_39_a29/