Firm homomorphisms of rings and semigroups
Theory and applications of categories, Tome 39 (2023), pp. 625-666.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper we define firm homomorphisms between rings without identity in such a way that the category of rings with identity will become a full subcategory of the category of firm rings with firm homomorphisms as morphisms. We prove that firm homomorphisms are in one-to-one correspondence with pairs of compatible concrete functors between certain module categories. This correspondence is given by the restriction of scalars. We also prove the semigroup theoretic analogues of these results and give a list of examples of firm homomorphisms.
Publié le :
Classification : 16B50, 16D90, 20M30
Keywords: Concrete functor, firm homomorphism, firm ring, firm module, closed module, restriction of scalars.
@article{TAC_2023_39_a21,
     author = {Leandro Mar{\'\i}n and Valdis Laan},
     title = {Firm homomorphisms of rings and semigroups},
     journal = {Theory and applications of categories},
     pages = {625--666},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a21/}
}
TY  - JOUR
AU  - Leandro Marín
AU  - Valdis Laan
TI  - Firm homomorphisms of rings and semigroups
JO  - Theory and applications of categories
PY  - 2023
SP  - 625
EP  - 666
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a21/
LA  - en
ID  - TAC_2023_39_a21
ER  - 
%0 Journal Article
%A Leandro Marín
%A Valdis Laan
%T Firm homomorphisms of rings and semigroups
%J Theory and applications of categories
%D 2023
%P 625-666
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a21/
%G en
%F TAC_2023_39_a21
Leandro Marín; Valdis Laan. Firm homomorphisms of rings and semigroups. Theory and applications of categories, Tome 39 (2023), pp. 625-666. http://geodesic.mathdoc.fr/item/TAC_2023_39_a21/