Finite symmetries of quantum character stacks
Theory and applications of categories, Tome 39 (2023), pp. 51-97.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a finite group D, we study categorical factorisation homology on oriented surfaces equipped with principal D-bundles, which "integrates" a (linear) balanced braided category A with D-action over those surfaces. For surfaces with at least one boundary component, we identify the value of factorisation homology with the category of modules over an explicit algebra in A, extending the work of Ben-Zvi, Brochier and Jordan to surfaces with D-bundles. Furthermore, we show that the value of factorisation homology on annuli, boundary conditions, and point defects can be described in terms of equivariant representation theory. Our main example comes from an action of Dynkin diagram automorphisms on representation categories of quantum groups. We show that in this case factorisation homology gives rise to a quantisation of the moduli space of flat twisted bundles.
Publié le :
Classification : 17B37, 18M15, 18M60, 57K16
Keywords: Factorisation homology, character varities, quantum groups, ribbon categories
@article{TAC_2023_39_a2,
     author = {Corina Keller and Lukas M\"uller},
     title = {Finite symmetries of quantum character stacks},
     journal = {Theory and applications of categories},
     pages = {51--97},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a2/}
}
TY  - JOUR
AU  - Corina Keller
AU  - Lukas Müller
TI  - Finite symmetries of quantum character stacks
JO  - Theory and applications of categories
PY  - 2023
SP  - 51
EP  - 97
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a2/
LA  - en
ID  - TAC_2023_39_a2
ER  - 
%0 Journal Article
%A Corina Keller
%A Lukas Müller
%T Finite symmetries of quantum character stacks
%J Theory and applications of categories
%D 2023
%P 51-97
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a2/
%G en
%F TAC_2023_39_a2
Corina Keller; Lukas Müller. Finite symmetries of quantum character stacks. Theory and applications of categories, Tome 39 (2023), pp. 51-97. http://geodesic.mathdoc.fr/item/TAC_2023_39_a2/