On Rota-Baxter Lie 2-algebras
Theory and applications of categories, Tome 39 (2023), pp. 545-566.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper, we introduce the notion of Rota-Baxter Lie 2-algebras, which is a categorification of Rota-Baxter Lie algebras. We prove that the category of Rota-Baxter Lie 2-algebras and the category of 2-term Rota-Baxter L_\infty-algebras are equivalent. We introduce the notion of a crossed module of Rota-Baxter Lie algebras, and show that there is a one-to-one correspondence between strict 2-term Rota-Baxter L_\infty-algebras and crossed modules of Rota-Baxter Lie algebras. At last, as applications of the crossed modules of Rota-Baxter Lie algebras, we give constructions of crossed modules of pre-Lie algebras and crossed modules of Lie algebras from them.
Publié le :
Classification : 17B38, 18N25
Keywords: Rota-Baxter Lie 2-algebra, 2-term Rota-Baxter L_\infty-algebra, crossed module
@article{TAC_2023_39_a18,
     author = {Shilong Zhang and Jiefeng Liu},
     title = {On {Rota-Baxter} {Lie} 2-algebras},
     journal = {Theory and applications of categories},
     pages = {545--566},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a18/}
}
TY  - JOUR
AU  - Shilong Zhang
AU  - Jiefeng Liu
TI  - On Rota-Baxter Lie 2-algebras
JO  - Theory and applications of categories
PY  - 2023
SP  - 545
EP  - 566
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a18/
LA  - en
ID  - TAC_2023_39_a18
ER  - 
%0 Journal Article
%A Shilong Zhang
%A Jiefeng Liu
%T On Rota-Baxter Lie 2-algebras
%J Theory and applications of categories
%D 2023
%P 545-566
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a18/
%G en
%F TAC_2023_39_a18
Shilong Zhang; Jiefeng Liu. On Rota-Baxter Lie 2-algebras. Theory and applications of categories, Tome 39 (2023), pp. 545-566. http://geodesic.mathdoc.fr/item/TAC_2023_39_a18/