Voir la notice de l'article provenant de la source Theory and Applications of Categories website
In this paper, we introduce the notion of Rota-Baxter Lie 2-algebras, which is a categorification of Rota-Baxter Lie algebras. We prove that the category of Rota-Baxter Lie 2-algebras and the category of 2-term Rota-Baxter L_\infty-algebras are equivalent. We introduce the notion of a crossed module of Rota-Baxter Lie algebras, and show that there is a one-to-one correspondence between strict 2-term Rota-Baxter L_\infty-algebras and crossed modules of Rota-Baxter Lie algebras. At last, as applications of the crossed modules of Rota-Baxter Lie algebras, we give constructions of crossed modules of pre-Lie algebras and crossed modules of Lie algebras from them.
@article{TAC_2023_39_a18, author = {Shilong Zhang and Jiefeng Liu}, title = {On {Rota-Baxter} {Lie} 2-algebras}, journal = {Theory and applications of categories}, pages = {545--566}, publisher = {mathdoc}, volume = {39}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a18/} }
Shilong Zhang; Jiefeng Liu. On Rota-Baxter Lie 2-algebras. Theory and applications of categories, Tome 39 (2023), pp. 545-566. http://geodesic.mathdoc.fr/item/TAC_2023_39_a18/