Operads for Symmetric Monoidal Categories
Theory and applications of categories, Tome 39 (2023), pp. 535-544.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper gives an explicit description of the categorical operad whose algebras are precisely symmetric monoidal categories. This allows us to place the operad in a sequence of four, thus generating a sequence of four successively stricter concepts of symmetric monoidal category. A companion paper will use this operadic presentation to describe a vast array of underlying multicategories for a symmetric monoidal category.
Publié le :
Classification : 18M05
Keywords: symmetric monoidal category, operad
@article{TAC_2023_39_a17,
     author = {A. D. Elmendorf},
     title = {Operads for {Symmetric} {Monoidal} {Categories}},
     journal = {Theory and applications of categories},
     pages = {535--544},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a17/}
}
TY  - JOUR
AU  - A. D. Elmendorf
TI  - Operads for Symmetric Monoidal Categories
JO  - Theory and applications of categories
PY  - 2023
SP  - 535
EP  - 544
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a17/
LA  - en
ID  - TAC_2023_39_a17
ER  - 
%0 Journal Article
%A A. D. Elmendorf
%T Operads for Symmetric Monoidal Categories
%J Theory and applications of categories
%D 2023
%P 535-544
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a17/
%G en
%F TAC_2023_39_a17
A. D. Elmendorf. Operads for Symmetric Monoidal Categories. Theory and applications of categories, Tome 39 (2023), pp. 535-544. http://geodesic.mathdoc.fr/item/TAC_2023_39_a17/