Exponentiability in categories of relational structures
Theory and applications of categories, Tome 39 (2023), pp. 493-518.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a relational Horn theory T, we provide useful sufficient conditions for the exponentiability of objects and morphisms in the category T-mod of T-models; well-known examples of such categories, which have found recent applications in the study of programming language semantics, include the categories of preordered sets and (extended) metric spaces. As a consequence, we obtain useful sufficient conditions for T-mod to be cartesian closed, locally cartesian closed, and even a quasitopos; in particular, we provide two different explanations for the cartesian closure of the categories of preordered and partially ordered sets. Our results recover (the sufficiency of) certain conditions that have been shown by Niefield and Clementino-Hofmann to characterize exponentiability in the category of partially ordered sets and the category V-cat of small V-categories for certain commutative unital quantales V.
Publié le :
Classification : 06A06, 06F07, 08A02, 18C35, 18D15
Keywords: relational Horn theory, relational structure, exponentiability, cartesian closed, locally cartesian closed, partial product, quasitopos
@article{TAC_2023_39_a15,
     author = {Jason Parker},
     title = {Exponentiability in categories of relational structures},
     journal = {Theory and applications of categories},
     pages = {493--518},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a15/}
}
TY  - JOUR
AU  - Jason Parker
TI  - Exponentiability in categories of relational structures
JO  - Theory and applications of categories
PY  - 2023
SP  - 493
EP  - 518
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a15/
LA  - en
ID  - TAC_2023_39_a15
ER  - 
%0 Journal Article
%A Jason Parker
%T Exponentiability in categories of relational structures
%J Theory and applications of categories
%D 2023
%P 493-518
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a15/
%G en
%F TAC_2023_39_a15
Jason Parker. Exponentiability in categories of relational structures. Theory and applications of categories, Tome 39 (2023), pp. 493-518. http://geodesic.mathdoc.fr/item/TAC_2023_39_a15/