Centrality and the commutativity of finite products with coequalisers
Theory and applications of categories, Tome 39 (2023), pp. 423-443.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study centrality of morphisms in a setting derived from that of a pointed category in which finite products commute with coequalisers. The main results of this paper show that much of the behaviour of central morphisms for unital categories is retained in our setting, including categories which are (weakly) unital, but also categories outside of the unital setting.
Publié le :
Classification : 18E13, 18A30, 08B10, 18E05, 08B25
Keywords: centrality, commutativity, finite products, coequalisers, unital category
@article{TAC_2023_39_a12,
     author = {Michael Hoefnagel},
     title = {Centrality and the commutativity of finite products with coequalisers},
     journal = {Theory and applications of categories},
     pages = {423--443},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a12/}
}
TY  - JOUR
AU  - Michael Hoefnagel
TI  - Centrality and the commutativity of finite products with coequalisers
JO  - Theory and applications of categories
PY  - 2023
SP  - 423
EP  - 443
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a12/
LA  - en
ID  - TAC_2023_39_a12
ER  - 
%0 Journal Article
%A Michael Hoefnagel
%T Centrality and the commutativity of finite products with coequalisers
%J Theory and applications of categories
%D 2023
%P 423-443
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a12/
%G en
%F TAC_2023_39_a12
Michael Hoefnagel. Centrality and the commutativity of finite products with coequalisers. Theory and applications of categories, Tome 39 (2023), pp. 423-443. http://geodesic.mathdoc.fr/item/TAC_2023_39_a12/