Colimits in enriched ∞-categories and Day convolution
Theory and applications of categories, Tome 39 (2023), pp. 365-422
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Let M be a monoidal ∞-category with colimits. In this paper we study colimits of M-functors A --> B where B is left-tensored over M and A is an M-enriched category. We prove that the enriched Yoneda embedding Y: A --> P_M(A) yields a universal M-functor. In case when A has a certain monoidal structure, the category of enriched presheaves P_M(A) inherits the same monoidal structure and the enriched Yoneda embedding acquires the structure of universal monoidal M-functor.
Publié le :
Classification :
18D20, 18N60, 18N70
Keywords: enriched categories, Day convolution, left-tensored categories
Keywords: enriched categories, Day convolution, left-tensored categories
@article{TAC_2023_39_a11,
author = {Vladimir Hinich},
title = {Colimits in enriched \ensuremath{\infty}-categories and {Day} convolution},
journal = {Theory and applications of categories},
pages = {365--422},
year = {2023},
volume = {39},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a11/}
}
Vladimir Hinich. Colimits in enriched ∞-categories and Day convolution. Theory and applications of categories, Tome 39 (2023), pp. 365-422. http://geodesic.mathdoc.fr/item/TAC_2023_39_a11/