Colimits in enriched ∞-categories and Day convolution
Theory and applications of categories, Tome 39 (2023), pp. 365-422.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let M be a monoidal ∞-category with colimits. In this paper we study colimits of M-functors A --> B where B is left-tensored over M and A is an M-enriched category. We prove that the enriched Yoneda embedding Y: A --> P_M(A) yields a universal M-functor. In case when A has a certain monoidal structure, the category of enriched presheaves P_M(A) inherits the same monoidal structure and the enriched Yoneda embedding acquires the structure of universal monoidal M-functor.
Publié le :
Classification : 18D20, 18N60, 18N70
Keywords: enriched categories, Day convolution, left-tensored categories
@article{TAC_2023_39_a11,
     author = {Vladimir Hinich},
     title = {Colimits in enriched \ensuremath{\infty}-categories  and {Day} convolution},
     journal = {Theory and applications of categories},
     pages = {365--422},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a11/}
}
TY  - JOUR
AU  - Vladimir Hinich
TI  - Colimits in enriched ∞-categories  and Day convolution
JO  - Theory and applications of categories
PY  - 2023
SP  - 365
EP  - 422
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a11/
LA  - en
ID  - TAC_2023_39_a11
ER  - 
%0 Journal Article
%A Vladimir Hinich
%T Colimits in enriched ∞-categories  and Day convolution
%J Theory and applications of categories
%D 2023
%P 365-422
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a11/
%G en
%F TAC_2023_39_a11
Vladimir Hinich. Colimits in enriched ∞-categories  and Day convolution. Theory and applications of categories, Tome 39 (2023), pp. 365-422. http://geodesic.mathdoc.fr/item/TAC_2023_39_a11/