On dualizable objects in monoidal bicategories
Theory and applications of categories, Tome 38 (2022), pp. 257-310.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove coherence theorems for dualizable objects in monoidal bicategories and for fully dualizable objects in symmetric monoidal bicategories, describing coherent dual pairs and coherent fully dual pairs. These are structures one can attach to an object which we show are property-like and equivalent to, respectively, dualizability and full dualizability. In the latter case, our work reduces the two-dimensional Cobordism Hypothesis of Baez-Dolan to a comparison problem between two explicitly defined bicategories.
Publié le :
Classification : 18N10, 18N20
Keywords: monoidal bicategories, dualizable objects, fully dualizable objects
@article{TAC_2022_38_a8,
     author = {Piotr Pstr\k{a}gowski},
     title = {On dualizable objects in monoidal bicategories},
     journal = {Theory and applications of categories},
     pages = {257--310},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a8/}
}
TY  - JOUR
AU  - Piotr Pstrągowski
TI  - On dualizable objects in monoidal bicategories
JO  - Theory and applications of categories
PY  - 2022
SP  - 257
EP  - 310
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a8/
LA  - en
ID  - TAC_2022_38_a8
ER  - 
%0 Journal Article
%A Piotr Pstrągowski
%T On dualizable objects in monoidal bicategories
%J Theory and applications of categories
%D 2022
%P 257-310
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a8/
%G en
%F TAC_2022_38_a8
Piotr Pstrągowski. On dualizable objects in monoidal bicategories. Theory and applications of categories, Tome 38 (2022), pp. 257-310. http://geodesic.mathdoc.fr/item/TAC_2022_38_a8/