Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We prove coherence theorems for dualizable objects in monoidal bicategories and for fully dualizable objects in symmetric monoidal bicategories, describing coherent dual pairs and coherent fully dual pairs. These are structures one can attach to an object which we show are property-like and equivalent to, respectively, dualizability and full dualizability. In the latter case, our work reduces the two-dimensional Cobordism Hypothesis of Baez-Dolan to a comparison problem between two explicitly defined bicategories.
@article{TAC_2022_38_a8, author = {Piotr Pstr\k{a}gowski}, title = {On dualizable objects in monoidal bicategories}, journal = {Theory and applications of categories}, pages = {257--310}, publisher = {mathdoc}, volume = {38}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a8/} }
Piotr Pstrągowski. On dualizable objects in monoidal bicategories. Theory and applications of categories, Tome 38 (2022), pp. 257-310. http://geodesic.mathdoc.fr/item/TAC_2022_38_a8/