Voir la notice de l'article provenant de la source Theory and Applications of Categories website
A central extension is a regular epimorphism in a Barr exact category C satisfying suitable conditions involving a given Birkhoff subcategory of C (joint work with G. M. Kelly, 1994). In this paper we take C to be the category of (not-necessarily-unital) algebras over a (unital) commutative ring and consider central extensions with respect to the category of commutative algebras. We propose a new approach that avoids the intermediate notion of central extension due to A. Fröhlich in showing that $\alpha:A\to B$ is a central extension if and only if $aa'=a'a$ for all $a,a'\in A$ with $\alpha(a')=0$. This approach motivates introducing what we call weakly action representable categories, and we show that such categories are always action accessible. We also make remarks on what we call initial weak representations of actions and formulate several open questions.
@article{TAC_2022_38_a35, author = {George Janelidze}, title = {Central extensions of associative algebras and weakly action representable categories}, journal = {Theory and applications of categories}, pages = {1395--1408}, publisher = {mathdoc}, volume = {38}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a35/} }
TY - JOUR AU - George Janelidze TI - Central extensions of associative algebras and weakly action representable categories JO - Theory and applications of categories PY - 2022 SP - 1395 EP - 1408 VL - 38 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2022_38_a35/ LA - en ID - TAC_2022_38_a35 ER -
George Janelidze. Central extensions of associative algebras and weakly action representable categories. Theory and applications of categories, Tome 38 (2022), pp. 1395-1408. http://geodesic.mathdoc.fr/item/TAC_2022_38_a35/