Voir la notice de l'article provenant de la source Theory and Applications of Categories website
This paper defines double fibrations (fibrations of double categories) and describes their key examples and properties. In particular, it shows how double fibrations relate to existing fibrational notions such as monoidal fibrations and discrete double fibrations, proves a representation theorem for double fibrations, and shows how double fibrations are a type of internal fibration.
@article{TAC_2022_38_a34, author = {G.S.H. Cruttwell and M.J. Lambert and D.A. Pronk and M. Szyld}, title = {Double {Fibrations}}, journal = {Theory and applications of categories}, pages = {1326--1394}, publisher = {mathdoc}, volume = {38}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a34/} }
G.S.H. Cruttwell; M.J. Lambert; D.A. Pronk; M. Szyld. Double Fibrations. Theory and applications of categories, Tome 38 (2022), pp. 1326-1394. http://geodesic.mathdoc.fr/item/TAC_2022_38_a34/