Double Fibrations
Theory and applications of categories, Tome 38 (2022), pp. 1326-1394
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
This paper defines double fibrations (fibrations of double categories) and describes their key examples and properties. In particular, it shows how double fibrations relate to existing fibrational notions such as monoidal fibrations and discrete double fibrations, proves a representation theorem for double fibrations, and shows how double fibrations are a type of internal fibration.
Publié le :
Classification :
18N10, 18D30
Keywords: double categories, fibrations of categories, internal categories, internal fibrations
Keywords: double categories, fibrations of categories, internal categories, internal fibrations
@article{TAC_2022_38_a34,
author = {G.S.H. Cruttwell and M.J. Lambert and D.A. Pronk and M. Szyld},
title = {Double {Fibrations}},
journal = {Theory and applications of categories},
pages = {1326--1394},
publisher = {mathdoc},
volume = {38},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a34/}
}
G.S.H. Cruttwell; M.J. Lambert; D.A. Pronk; M. Szyld. Double Fibrations. Theory and applications of categories, Tome 38 (2022), pp. 1326-1394. http://geodesic.mathdoc.fr/item/TAC_2022_38_a34/