Double Fibrations
Theory and applications of categories, Tome 38 (2022), pp. 1326-1394.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper defines double fibrations (fibrations of double categories) and describes their key examples and properties. In particular, it shows how double fibrations relate to existing fibrational notions such as monoidal fibrations and discrete double fibrations, proves a representation theorem for double fibrations, and shows how double fibrations are a type of internal fibration.
Publié le :
Classification : 18N10, 18D30
Keywords: double categories, fibrations of categories, internal categories, internal fibrations
@article{TAC_2022_38_a34,
     author = {G.S.H. Cruttwell and M.J. Lambert and D.A. Pronk and M. Szyld},
     title = {Double {Fibrations}},
     journal = {Theory and applications of categories},
     pages = {1326--1394},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a34/}
}
TY  - JOUR
AU  - G.S.H. Cruttwell
AU  - M.J. Lambert
AU  - D.A. Pronk
AU  - M. Szyld
TI  - Double Fibrations
JO  - Theory and applications of categories
PY  - 2022
SP  - 1326
EP  - 1394
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a34/
LA  - en
ID  - TAC_2022_38_a34
ER  - 
%0 Journal Article
%A G.S.H. Cruttwell
%A M.J. Lambert
%A D.A. Pronk
%A M. Szyld
%T Double Fibrations
%J Theory and applications of categories
%D 2022
%P 1326-1394
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a34/
%G en
%F TAC_2022_38_a34
G.S.H. Cruttwell; M.J. Lambert; D.A. Pronk; M. Szyld. Double Fibrations. Theory and applications of categories, Tome 38 (2022), pp. 1326-1394. http://geodesic.mathdoc.fr/item/TAC_2022_38_a34/