Homotopy Equivalent Algebraic Structures in Multicategories and Permutative Categories
Theory and applications of categories, Tome 38 (2022), pp. 1156-1208
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show that the free construction from multicategories to permutative categories is a categorically-enriched non-symmetric multifunctor. Our main result then shows that the induced functor between categories of algebras is an equivalence of homotopy theories. We describe an application to ring categories.
Publié le :
Classification :
Primary: 18M65, Secondary: 55P42, 18M05
Keywords: multicategory, permutative category, homotopy equivalence, operad algebra
Keywords: multicategory, permutative category, homotopy equivalence, operad algebra
@article{TAC_2022_38_a29,
author = {Niles Johnson and Donald Yau},
title = {Homotopy {Equivalent} {Algebraic} {Structures} in {Multicategories} and {Permutative} {Categories}},
journal = {Theory and applications of categories},
pages = {1156--1208},
year = {2022},
volume = {38},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a29/}
}
TY - JOUR AU - Niles Johnson AU - Donald Yau TI - Homotopy Equivalent Algebraic Structures in Multicategories and Permutative Categories JO - Theory and applications of categories PY - 2022 SP - 1156 EP - 1208 VL - 38 UR - http://geodesic.mathdoc.fr/item/TAC_2022_38_a29/ LA - en ID - TAC_2022_38_a29 ER -
Niles Johnson; Donald Yau. Homotopy Equivalent Algebraic Structures in Multicategories and Permutative Categories. Theory and applications of categories, Tome 38 (2022), pp. 1156-1208. http://geodesic.mathdoc.fr/item/TAC_2022_38_a29/