Homotopy Equivalent Algebraic Structures in Multicategories and Permutative Categories
Theory and applications of categories, Tome 38 (2022), pp. 1156-1208.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that the free construction from multicategories to permutative categories is a categorically-enriched non-symmetric multifunctor. Our main result then shows that the induced functor between categories of algebras is an equivalence of homotopy theories. We describe an application to ring categories.
Publié le :
Classification : Primary: 18M65, Secondary: 55P42, 18M05
Keywords: multicategory, permutative category, homotopy equivalence, operad algebra
@article{TAC_2022_38_a29,
     author = {Niles Johnson and Donald Yau},
     title = {Homotopy {Equivalent} {Algebraic} {Structures} in {Multicategories} and {Permutative} {Categories}},
     journal = {Theory and applications of categories},
     pages = {1156--1208},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a29/}
}
TY  - JOUR
AU  - Niles Johnson
AU  - Donald Yau
TI  - Homotopy Equivalent Algebraic Structures in Multicategories and Permutative Categories
JO  - Theory and applications of categories
PY  - 2022
SP  - 1156
EP  - 1208
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a29/
LA  - en
ID  - TAC_2022_38_a29
ER  - 
%0 Journal Article
%A Niles Johnson
%A Donald Yau
%T Homotopy Equivalent Algebraic Structures in Multicategories and Permutative Categories
%J Theory and applications of categories
%D 2022
%P 1156-1208
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a29/
%G en
%F TAC_2022_38_a29
Niles Johnson; Donald Yau. Homotopy Equivalent Algebraic Structures in Multicategories and Permutative Categories. Theory and applications of categories, Tome 38 (2022), pp. 1156-1208. http://geodesic.mathdoc.fr/item/TAC_2022_38_a29/