Pushforwards and Gauge Transformations for Categorical Connections
Theory and applications of categories, Tome 38 (2022), pp. 1015-1049
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We construct and establish results for a categorical counterpart of pushforwards of connections on principal bundles. This categorical pushforward takes as input a categorical connection A_P on a categorical bundle P and an appropriate functor S: P -> Q and outputs a categorical connection S_*A_P on the categorical bundle Q. Applying this construction to the case of categorical bundles arising from decorated path spaces in principal bundles, we obtain a transformation of classical connections that combines the traditional gauge transformation with an affine translation.
Publié le :
Classification :
Primary: 18D05, Secondary: 20C99
Keywords: Categorical Groups, Categorical geometry, Principal bundles, Gauge Theory
Keywords: Categorical Groups, Categorical geometry, Principal bundles, Gauge Theory
@article{TAC_2022_38_a24,
author = {Saikat Chatterjee and Amitabha Lahiri and Ambar N. Sengupta},
title = {Pushforwards and {Gauge} {Transformations} for {Categorical} {Connections}},
journal = {Theory and applications of categories},
pages = {1015--1049},
year = {2022},
volume = {38},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a24/}
}
TY - JOUR AU - Saikat Chatterjee AU - Amitabha Lahiri AU - Ambar N. Sengupta TI - Pushforwards and Gauge Transformations for Categorical Connections JO - Theory and applications of categories PY - 2022 SP - 1015 EP - 1049 VL - 38 UR - http://geodesic.mathdoc.fr/item/TAC_2022_38_a24/ LA - en ID - TAC_2022_38_a24 ER -
Saikat Chatterjee; Amitabha Lahiri; Ambar N. Sengupta. Pushforwards and Gauge Transformations for Categorical Connections. Theory and applications of categories, Tome 38 (2022), pp. 1015-1049. http://geodesic.mathdoc.fr/item/TAC_2022_38_a24/