Extensivity of categories of relational structures
Theory and applications of categories, Tome 38 (2022), pp. 898-912.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove that the category of models of any relational Horn theory satisfying a mild syntactic condition is infinitely extensive. Central examples of such categories include the categories of preordered sets and partially ordered sets, and the categories of small V-categories, (symmetric) pseudo-V-metric spaces, and (symmetric) V-metric spaces for a commutative unital quantale V. We also explicitly characterize initial sources and final sinks in such categories, and in particular embeddings and quotients.
Publié le :
Classification : 06A06, 06F07, 18B50, 18C10, 18C35
Keywords: relational Horn theory, extensive category, topological category, locally presentable category, concrete category, distributive category
@article{TAC_2022_38_a22,
     author = {Jason Parker},
     title = {Extensivity of categories of relational structures},
     journal = {Theory and applications of categories},
     pages = {898--912},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a22/}
}
TY  - JOUR
AU  - Jason Parker
TI  - Extensivity of categories of relational structures
JO  - Theory and applications of categories
PY  - 2022
SP  - 898
EP  - 912
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a22/
LA  - en
ID  - TAC_2022_38_a22
ER  - 
%0 Journal Article
%A Jason Parker
%T Extensivity of categories of relational structures
%J Theory and applications of categories
%D 2022
%P 898-912
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a22/
%G en
%F TAC_2022_38_a22
Jason Parker. Extensivity of categories of relational structures. Theory and applications of categories, Tome 38 (2022), pp. 898-912. http://geodesic.mathdoc.fr/item/TAC_2022_38_a22/