Probability monads as codensity monads
Theory and applications of categories, Tome 38 (2022), pp. 811-842.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show from a categorical point of view that probability measures on certain measurable or topological spaces arise canonically as the extension of probability distributions on countable sets. We do this by constructing probability monads as the codensity monads of functors that send a countable set to the space of probability distributions on that set. On (pre)measurable spaces we discuss monads of probability (pre)measures and their finitely additive analogues. We also give codensity constructions for monads of Radon measures on compact Hausdorff spaces and compact metric spaces and for the monad of Baire measures on Hausdorff spaces.A crucial role in these constructions is given by integral representation theorems, which we derive from a generalized Daniell-Stone theorem.
Publié le :
Classification : 18C15, 18A99, 60A99, 60B05
Keywords: probabiliy monad, codensity monad, Radon measure, Daniell-Stone
@article{TAC_2022_38_a20,
     author = {Ruben Van Belle},
     title = {Probability monads as codensity monads},
     journal = {Theory and applications of categories},
     pages = {811--842},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a20/}
}
TY  - JOUR
AU  - Ruben Van Belle
TI  - Probability monads as codensity monads
JO  - Theory and applications of categories
PY  - 2022
SP  - 811
EP  - 842
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a20/
LA  - en
ID  - TAC_2022_38_a20
ER  - 
%0 Journal Article
%A Ruben Van Belle
%T Probability monads as codensity monads
%J Theory and applications of categories
%D 2022
%P 811-842
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a20/
%G en
%F TAC_2022_38_a20
Ruben Van Belle. Probability monads as codensity monads. Theory and applications of categories, Tome 38 (2022), pp. 811-842. http://geodesic.mathdoc.fr/item/TAC_2022_38_a20/