Enriched locally generated categories
Theory and applications of categories, Tome 38 (2022), pp. 661-683.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce the notion of M-locally generated category for a factorization system (E,M) and study its properties. We offer a Gabriel-Ulmer duality for these categories, introducing the notion of nest. We develop this theory also from an enriched point of view. We apply this technology to Banach spaces showing that it is equivalent to the category of models of the nest of finite-dimensional Banach spaces.
Publié le :
Classification : 18C30, 18C35, 18D20, 8C15, 46A03, 46B04, 54B30
Keywords: locally generated category, nest, Gabriel-Ulmer duality, enriched category, metric spaces, Banach spaces, accessible monad
@article{TAC_2022_38_a16,
     author = {I. Di Liberti and J. Rosick\'y},
     title = {Enriched locally generated categories},
     journal = {Theory and applications of categories},
     pages = {661--683},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a16/}
}
TY  - JOUR
AU  - I. Di Liberti
AU  - J. Rosický
TI  - Enriched locally generated categories
JO  - Theory and applications of categories
PY  - 2022
SP  - 661
EP  - 683
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a16/
LA  - en
ID  - TAC_2022_38_a16
ER  - 
%0 Journal Article
%A I. Di Liberti
%A J. Rosický
%T Enriched locally generated categories
%J Theory and applications of categories
%D 2022
%P 661-683
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a16/
%G en
%F TAC_2022_38_a16
I. Di Liberti; J. Rosický. Enriched locally generated categories. Theory and applications of categories, Tome 38 (2022), pp. 661-683. http://geodesic.mathdoc.fr/item/TAC_2022_38_a16/