Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We construct a modular functor which takes its values in the monoidal bicategory of finite categories, left exact functors and natural transformations. The modular functor is defined on bordisms that are 2-framed. Accordingly we do not need to require that the finite categories appearing in our construction are semisimple, nor that the finite tensor categories that are assigned to two-dimensional strata are endowed with a pivotal structure. Our prescription can be understood as a state-sum construction. The state-sum variables are assigned to one-dimensional strata and take values in bimodule categories over finite tensor categories, whereby we also account for the presence of boundaries and defects. Our construction allows us to explicitly compute functors associated to surfaces and representations of mapping class groups acting on them.
@article{TAC_2022_38_a14, author = {J\"urgen Fuchs and Gregor Schaumann and Christoph Schweigert}, title = {A modular functor from state sums for finite tensor categories and their bimodules}, journal = {Theory and applications of categories}, pages = {436--594}, publisher = {mathdoc}, volume = {38}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a14/} }
TY - JOUR AU - Jürgen Fuchs AU - Gregor Schaumann AU - Christoph Schweigert TI - A modular functor from state sums for finite tensor categories and their bimodules JO - Theory and applications of categories PY - 2022 SP - 436 EP - 594 VL - 38 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2022_38_a14/ LA - en ID - TAC_2022_38_a14 ER -
%0 Journal Article %A Jürgen Fuchs %A Gregor Schaumann %A Christoph Schweigert %T A modular functor from state sums for finite tensor categories and their bimodules %J Theory and applications of categories %D 2022 %P 436-594 %V 38 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2022_38_a14/ %G en %F TAC_2022_38_a14
Jürgen Fuchs; Gregor Schaumann; Christoph Schweigert. A modular functor from state sums for finite tensor categories and their bimodules. Theory and applications of categories, Tome 38 (2022), pp. 436-594. http://geodesic.mathdoc.fr/item/TAC_2022_38_a14/