The Moore Complex of a Simplicial Cocommutative Hopf Algebra
Theory and applications of categories, Tome 37 (2021), pp. 189-226
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We study the Moore complex of a simplicial cocommutative Hopf algebra through Hopf kernels. The most striking result to emerge from this construction is the coherent definition of 2-crossed modules of cocommutative Hopf algebras. This unifies the 2-crossed module theory of groups and of Lie algebras when we take the group-like and primitive functors into consideration.
Publié le :
Classification :
16T05, 16S40, 18G45, 55U10, 55U15
Keywords: Hopf algebra, simplicial object, Moore complex, 2-crossed module
Keywords: Hopf algebra, simplicial object, Moore complex, 2-crossed module
@article{TAC_2021_37_a6,
author = {Kadir Emir},
title = {The {Moore} {Complex} of a {Simplicial} {Cocommutative} {Hopf} {Algebra}},
journal = {Theory and applications of categories},
pages = {189--226},
year = {2021},
volume = {37},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a6/}
}
Kadir Emir. The Moore Complex of a Simplicial Cocommutative Hopf Algebra. Theory and applications of categories, Tome 37 (2021), pp. 189-226. http://geodesic.mathdoc.fr/item/TAC_2021_37_a6/