Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We study the Moore complex of a simplicial cocommutative Hopf algebra through Hopf kernels. The most striking result to emerge from this construction is the coherent definition of 2-crossed modules of cocommutative Hopf algebras. This unifies the 2-crossed module theory of groups and of Lie algebras when we take the group-like and primitive functors into consideration.
@article{TAC_2021_37_a6, author = {Kadir Emir}, title = {The {Moore} {Complex} of a {Simplicial} {Cocommutative} {Hopf} {Algebra}}, journal = {Theory and applications of categories}, pages = {189--226}, publisher = {mathdoc}, volume = {37}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a6/} }
Kadir Emir. The Moore Complex of a Simplicial Cocommutative Hopf Algebra. Theory and applications of categories, Tome 37 (2021), pp. 189-226. http://geodesic.mathdoc.fr/item/TAC_2021_37_a6/