The Moore Complex of a Simplicial Cocommutative Hopf Algebra
Theory and applications of categories, Tome 37 (2021), pp. 189-226.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study the Moore complex of a simplicial cocommutative Hopf algebra through Hopf kernels. The most striking result to emerge from this construction is the coherent definition of 2-crossed modules of cocommutative Hopf algebras. This unifies the 2-crossed module theory of groups and of Lie algebras when we take the group-like and primitive functors into consideration.
Publié le :
Classification : 16T05, 16S40, 18G45, 55U10, 55U15
Keywords: Hopf algebra, simplicial object, Moore complex, 2-crossed module
@article{TAC_2021_37_a6,
     author = {Kadir Emir},
     title = {The {Moore} {Complex} of a {Simplicial}  {Cocommutative} {Hopf} {Algebra}},
     journal = {Theory and applications of categories},
     pages = {189--226},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a6/}
}
TY  - JOUR
AU  - Kadir Emir
TI  - The Moore Complex of a Simplicial  Cocommutative Hopf Algebra
JO  - Theory and applications of categories
PY  - 2021
SP  - 189
EP  - 226
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a6/
LA  - en
ID  - TAC_2021_37_a6
ER  - 
%0 Journal Article
%A Kadir Emir
%T The Moore Complex of a Simplicial  Cocommutative Hopf Algebra
%J Theory and applications of categories
%D 2021
%P 189-226
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a6/
%G en
%F TAC_2021_37_a6
Kadir Emir. The Moore Complex of a Simplicial  Cocommutative Hopf Algebra. Theory and applications of categories, Tome 37 (2021), pp. 189-226. http://geodesic.mathdoc.fr/item/TAC_2021_37_a6/