Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We generalize the notion of ends and coends in category theory to the realm of module categories over finite tensor categories. We call this new concept module (co)end. This tool allows us to give different proofs to several known results in the theory of representations of finite tensor categories. As a new application, we present a description of the relative Serre functor for module categories in terms of a module coend, in a analogous way as a Morita invariant description of the Nakayama functor of abelian categories presented in [4].
@article{TAC_2021_37_a5, author = {Noelia Bortolussi and Mart{\'\i}n Mombelli}, title = {(Co)ends for representations of tensor categories}, journal = {Theory and applications of categories}, pages = {144--188}, publisher = {mathdoc}, volume = {37}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a5/} }
Noelia Bortolussi; Martín Mombelli. (Co)ends for representations of tensor categories. Theory and applications of categories, Tome 37 (2021), pp. 144-188. http://geodesic.mathdoc.fr/item/TAC_2021_37_a5/