(Co)ends for representations of tensor categories
Theory and applications of categories, Tome 37 (2021), pp. 144-188.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We generalize the notion of ends and coends in category theory to the realm of module categories over finite tensor categories. We call this new concept module (co)end. This tool allows us to give different proofs to several known results in the theory of representations of finite tensor categories. As a new application, we present a description of the relative Serre functor for module categories in terms of a module coend, in a analogous way as a Morita invariant description of the Nakayama functor of abelian categories presented in [4].
Publié le :
Classification : 18D20, 18M05
Keywords: tensor category, module category
@article{TAC_2021_37_a5,
     author = {Noelia Bortolussi and Mart{\'\i}n Mombelli},
     title = {(Co)ends  for representations of tensor categories},
     journal = {Theory and applications of categories},
     pages = {144--188},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a5/}
}
TY  - JOUR
AU  - Noelia Bortolussi
AU  - Martín Mombelli
TI  - (Co)ends  for representations of tensor categories
JO  - Theory and applications of categories
PY  - 2021
SP  - 144
EP  - 188
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a5/
LA  - en
ID  - TAC_2021_37_a5
ER  - 
%0 Journal Article
%A Noelia Bortolussi
%A Martín Mombelli
%T (Co)ends  for representations of tensor categories
%J Theory and applications of categories
%D 2021
%P 144-188
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a5/
%G en
%F TAC_2021_37_a5
Noelia Bortolussi; Martín Mombelli. (Co)ends  for representations of tensor categories. Theory and applications of categories, Tome 37 (2021), pp. 144-188. http://geodesic.mathdoc.fr/item/TAC_2021_37_a5/