Compact closed categories and Γ-categories
Theory and applications of categories, Tome 37 (2021), pp. 1222-1261.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper we develop a 2-categorical approach to coherence in compact closed categories. Our approach allows us to place compact closed categories within the context of homotopical algebra. More precisely, we construct two new model categories whose fibrant objects are (two different models of) compact closed categories. We prove a strictification theorem by showing a Quillen equivalence between the two.
Publié le :
Classification : 18M05, 18M60, 18N55, 18F25, 55P42, 19D23
Keywords: Compact closed categories, coherently compact closed categories, Segal's Nerve functor
@article{TAC_2021_37_a36,
     author = {Amit Sharma},
     title = {Compact closed categories and {\ensuremath{\Gamma}-categories}},
     journal = {Theory and applications of categories},
     pages = {1222--1261},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a36/}
}
TY  - JOUR
AU  - Amit Sharma
TI  - Compact closed categories and Γ-categories
JO  - Theory and applications of categories
PY  - 2021
SP  - 1222
EP  - 1261
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a36/
LA  - en
ID  - TAC_2021_37_a36
ER  - 
%0 Journal Article
%A Amit Sharma
%T Compact closed categories and Γ-categories
%J Theory and applications of categories
%D 2021
%P 1222-1261
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a36/
%G en
%F TAC_2021_37_a36
Amit Sharma. Compact closed categories and Γ-categories. Theory and applications of categories, Tome 37 (2021), pp. 1222-1261. http://geodesic.mathdoc.fr/item/TAC_2021_37_a36/