On Supercompactly and Compactly Generated Toposes
Theory and applications of categories, Tome 37 (2021), pp. 1017-1079.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We present and characterize the classes of Grothendieck toposes having enough supercompact objects or enough compact objects. In the process, we examine the subcategories of supercompact objects and compact objects within such toposes and classes of geometric morphism which interact well with these objects. We also present canonical classes of sites generating such toposes.
Publié le :
Classification : 18F10, 18B25
Keywords: Grothendieck topos, supercompact object, morphism of sites, presheaf topos, regular topos, coherent topos
@article{TAC_2021_37_a31,
     author = {Morgan Rogers},
     title = {On {Supercompactly} and {Compactly} {Generated} {Toposes}},
     journal = {Theory and applications of categories},
     pages = {1017--1079},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a31/}
}
TY  - JOUR
AU  - Morgan Rogers
TI  - On Supercompactly and Compactly Generated Toposes
JO  - Theory and applications of categories
PY  - 2021
SP  - 1017
EP  - 1079
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a31/
LA  - en
ID  - TAC_2021_37_a31
ER  - 
%0 Journal Article
%A Morgan Rogers
%T On Supercompactly and Compactly Generated Toposes
%J Theory and applications of categories
%D 2021
%P 1017-1079
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a31/
%G en
%F TAC_2021_37_a31
Morgan Rogers. On Supercompactly and Compactly Generated Toposes. Theory and applications of categories, Tome 37 (2021), pp. 1017-1079. http://geodesic.mathdoc.fr/item/TAC_2021_37_a31/