Variation on a comprehensive theme
Theory and applications of categories, Tome 37 (2021), pp. 964-978.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The main result concerns a bicategorical factorization system on the bicategory Cat of categories and functors. Each functor f factors up to isomorphism as j, p where j is what we call an ultimate functor and p is what we call a groupoid fibration. Every right adjoint functor is ultimate. Functors whose ultimate factor is a right adjoint are shown to have bearing on the theory of polynomial functors.
Publié le :
Classification : 18B10, 18D05
Keywords: factorization system, bicategory, fibration, final functor
@article{TAC_2021_37_a28,
     author = {Ross Street},
     title = {Variation on a comprehensive theme},
     journal = {Theory and applications of categories},
     pages = {964--978},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a28/}
}
TY  - JOUR
AU  - Ross Street
TI  - Variation on a comprehensive theme
JO  - Theory and applications of categories
PY  - 2021
SP  - 964
EP  - 978
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a28/
LA  - en
ID  - TAC_2021_37_a28
ER  - 
%0 Journal Article
%A Ross Street
%T Variation on a comprehensive theme
%J Theory and applications of categories
%D 2021
%P 964-978
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a28/
%G en
%F TAC_2021_37_a28
Ross Street. Variation on a comprehensive theme. Theory and applications of categories, Tome 37 (2021), pp. 964-978. http://geodesic.mathdoc.fr/item/TAC_2021_37_a28/