Tensor-restriction categories
Theory and applications of categories, Tome 37 (2021), pp. 635-670 Cet article a éte moissonné depuis la source Theory and Applications of Categories website

Voir la notice de l'article

Restriction categories were established to handle maps that are partially defined with respect to composition. Tensor topology realises that monoidal categories have an intrinsic notion of space, and deals with objects and maps that are partially defined with respect to this spatial structure. We introduce a construction that turns a firm monoidal category into a restriction category and axiomatise the monoidal restriction categories that arise this way, called tensor-restriction categories.

Classification : 18M05, 18M30
Keywords: Subunits, Tensor Topology, Restriction Categories, Tensor-Restriction Categories
@article{TAC_2021_37_a20,
     author = {Chris Heunen and Jean-Simon Pacaud Lemay},
     title = {Tensor-restriction categories},
     journal = {Theory and applications of categories},
     pages = {635--670},
     year = {2021},
     volume = {37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a20/}
}
TY  - JOUR
AU  - Chris Heunen
AU  - Jean-Simon Pacaud Lemay
TI  - Tensor-restriction categories
JO  - Theory and applications of categories
PY  - 2021
SP  - 635
EP  - 670
VL  - 37
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a20/
LA  - en
ID  - TAC_2021_37_a20
ER  - 
%0 Journal Article
%A Chris Heunen
%A Jean-Simon Pacaud Lemay
%T Tensor-restriction categories
%J Theory and applications of categories
%D 2021
%P 635-670
%V 37
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a20/
%G en
%F TAC_2021_37_a20
Chris Heunen; Jean-Simon Pacaud Lemay. Tensor-restriction categories. Theory and applications of categories, Tome 37 (2021), pp. 635-670. http://geodesic.mathdoc.fr/item/TAC_2021_37_a20/