Parsummable categories as a strictification of symmetric
monoidal categories
Theory and applications of categories, Tome 37 (2021), pp. 482-529
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We prove that the homotopy theory of parsummable categories (as defined by Schwede) with respect to the underlying equivalences of categories is equivalent to the usual homotopy theory of symmetric monoidal categories. In particular, this yields a model of symmetric monoidal categories in terms of categories equipped with a strictly commutative, associative, and unital (but only partially defined) operation.
Publié le :
Classification :
Primary 18D10, 18D35, Secondary 19D23, 18G55
Keywords: Symmetric monoidal categories, parsummable categories, strictification, global algebraic K-theory
Keywords: Symmetric monoidal categories, parsummable categories, strictification, global algebraic K-theory
@article{TAC_2021_37_a16,
author = {Tobias Lenz},
title = {Parsummable categories as a strictification of symmetric
monoidal categories},
journal = {Theory and applications of categories},
pages = {482--529},
year = {2021},
volume = {37},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a16/}
}
Tobias Lenz. Parsummable categories as a strictification of symmetric monoidal categories. Theory and applications of categories, Tome 37 (2021), pp. 482-529. http://geodesic.mathdoc.fr/item/TAC_2021_37_a16/