Parsummable categories as a strictification of symmetric monoidal categories
Theory and applications of categories, Tome 37 (2021), pp. 482-529.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove that the homotopy theory of parsummable categories (as defined by Schwede) with respect to the underlying equivalences of categories is equivalent to the usual homotopy theory of symmetric monoidal categories. In particular, this yields a model of symmetric monoidal categories in terms of categories equipped with a strictly commutative, associative, and unital (but only partially defined) operation.
Publié le :
Classification : Primary 18D10, 18D35, Secondary 19D23, 18G55
Keywords: Symmetric monoidal categories, parsummable categories, strictification, global algebraic K-theory
@article{TAC_2021_37_a16,
     author = {Tobias Lenz},
     title = {Parsummable categories as a strictification of symmetric
monoidal categories},
     journal = {Theory and applications of categories},
     pages = {482--529},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a16/}
}
TY  - JOUR
AU  - Tobias Lenz
TI  - Parsummable categories as a strictification of symmetric
monoidal categories
JO  - Theory and applications of categories
PY  - 2021
SP  - 482
EP  - 529
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a16/
LA  - en
ID  - TAC_2021_37_a16
ER  - 
%0 Journal Article
%A Tobias Lenz
%T Parsummable categories as a strictification of symmetric
monoidal categories
%J Theory and applications of categories
%D 2021
%P 482-529
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a16/
%G en
%F TAC_2021_37_a16
Tobias Lenz. Parsummable categories as a strictification of symmetric
monoidal categories. Theory and applications of categories, Tome 37 (2021), pp. 482-529. http://geodesic.mathdoc.fr/item/TAC_2021_37_a16/