A new approach to S-protomodular categories
Theory and applications of categories, Tome 37 (2021), pp. 378-387
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We propose a new approach to S-protomodular categories in the sense of D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral. Instead of points (=split epimorphisms) it uses generalized points, which we define as composable pairs of morphisms whose composites are pullback stable regular epimorphisms. This approach is convenient in describing the connection between split and regular Schreier epimorphisms of monoids.
Publié le :
Classification :
18E13, 18A20
Keywords: generalized points, strong generalized points, S-protomodular categories, T-protomodular categories, regular Schreier extensions, split Schreir extensions, monoids
Keywords: generalized points, strong generalized points, S-protomodular categories, T-protomodular categories, regular Schreier extensions, split Schreir extensions, monoids
@article{TAC_2021_37_a13,
author = {Tamar Janelidze-Gray},
title = {A new approach to {S-protomodular} categories},
journal = {Theory and applications of categories},
pages = {378--387},
year = {2021},
volume = {37},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a13/}
}
Tamar Janelidze-Gray. A new approach to S-protomodular categories. Theory and applications of categories, Tome 37 (2021), pp. 378-387. http://geodesic.mathdoc.fr/item/TAC_2021_37_a13/