A new approach to S-protomodular categories
Theory and applications of categories, Tome 37 (2021), pp. 378-387.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We propose a new approach to S-protomodular categories in the sense of D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral. Instead of points (=split epimorphisms) it uses generalized points, which we define as composable pairs of morphisms whose composites are pullback stable regular epimorphisms. This approach is convenient in describing the connection between split and regular Schreier epimorphisms of monoids.
Publié le :
Classification : 18E13, 18A20
Keywords: generalized points, strong generalized points, S-protomodular categories, T-protomodular categories, regular Schreier extensions, split Schreir extensions, monoids
@article{TAC_2021_37_a13,
     author = {Tamar Janelidze-Gray},
     title = {A new approach to {S-protomodular} categories},
     journal = {Theory and applications of categories},
     pages = {378--387},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a13/}
}
TY  - JOUR
AU  - Tamar Janelidze-Gray
TI  - A new approach to S-protomodular categories
JO  - Theory and applications of categories
PY  - 2021
SP  - 378
EP  - 387
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a13/
LA  - en
ID  - TAC_2021_37_a13
ER  - 
%0 Journal Article
%A Tamar Janelidze-Gray
%T A new approach to S-protomodular categories
%J Theory and applications of categories
%D 2021
%P 378-387
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a13/
%G en
%F TAC_2021_37_a13
Tamar Janelidze-Gray. A new approach to S-protomodular categories. Theory and applications of categories, Tome 37 (2021), pp. 378-387. http://geodesic.mathdoc.fr/item/TAC_2021_37_a13/