Minimal accessible categories
Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 280-287
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We give a purely category-theoretic proof of the result of Makkai and Paré saying that the category Lin of linearly ordered sets and order preserving injective mappings is a minimal finitely accessible category. We also discuss the existence of a minimal ℵ_1-accessible category.
Publié le :
Classification :
18C35, 03C48
Keywords: accessible category, indiscernibles, linear order
Keywords: accessible category, indiscernibles, linear order
@article{TAC_2021_36_a9,
author = {Ji\v{r}{\'\i} Rosick\'y},
title = {Minimal accessible categories},
journal = {Theory and applications of categories},
pages = {280--287},
year = {2021},
volume = {36},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a9/}
}
Jiří Rosický. Minimal accessible categories. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 280-287. http://geodesic.mathdoc.fr/item/TAC_2021_36_a9/