Minimal accessible categories
Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 280-287.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give a purely category-theoretic proof of the result of Makkai and Paré saying that the category Lin of linearly ordered sets and order preserving injective mappings is a minimal finitely accessible category. We also discuss the existence of a minimal ℵ_1-accessible category.
Publié le :
Classification : 18C35, 03C48
Keywords: accessible category, indiscernibles, linear order
@article{TAC_2021_36_a9,
     author = {Ji\v{r}{\'\i} Rosick\'y},
     title = {Minimal accessible categories},
     journal = {Theory and applications of categories},
     pages = {280--287},
     publisher = {mathdoc},
     volume = {36},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a9/}
}
TY  - JOUR
AU  - Jiří Rosický
TI  - Minimal accessible categories
JO  - Theory and applications of categories
PY  - 2021
SP  - 280
EP  - 287
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_36_a9/
LA  - en
ID  - TAC_2021_36_a9
ER  - 
%0 Journal Article
%A Jiří Rosický
%T Minimal accessible categories
%J Theory and applications of categories
%D 2021
%P 280-287
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_36_a9/
%G en
%F TAC_2021_36_a9
Jiří Rosický. Minimal accessible categories. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 280-287. http://geodesic.mathdoc.fr/item/TAC_2021_36_a9/